Wiki source code of POC1 API & Schemas Specification
Last modified by Robert Schaub on 2025/12/24 20:16
Show last authors
| author | version | line-number | content |
|---|---|---|---|
| 1 | = POC1 API & Schemas Specification = | ||
| 2 | |||
| 3 | ---- | ||
| 4 | |||
| 5 | == Version History == | ||
| 6 | |||
| 7 | |=Version|=Date|=Changes | ||
| 8 | |0.4.1|2025-12-24|Applied 9 critical fixes: file format notice, verdict taxonomy, canonicalization algorithm, Stage 1 cost policy, BullMQ fix, language in cache key, historical claims TTL, idempotency, copyright policy | ||
| 9 | |0.4|2025-12-24|**BREAKING:** 3-stage pipeline with claim-level caching, user tier system, cache-only mode for free users, Redis cache architecture | ||
| 10 | |0.3.1|2025-12-24|Fixed single-prompt strategy, SSE clarification, schema canonicalization, cost constraints | ||
| 11 | |0.3|2025-12-24|Added complete API endpoints, LLM config, risk tiers, scraping details | ||
| 12 | |||
| 13 | ---- | ||
| 14 | |||
| 15 | == 1. Core Objective (POC1) == | ||
| 16 | |||
| 17 | The primary technical goal of POC1 is to validate **Approach 1 (Single-Pass Holistic Analysis)** while implementing **claim-level caching** to achieve cost sustainability. | ||
| 18 | |||
| 19 | The system must prove that AI can identify an article's **Main Thesis** and determine if supporting claims logically support that thesis without committing fallacies. | ||
| 20 | |||
| 21 | === Success Criteria: === | ||
| 22 | |||
| 23 | * Test with 30 diverse articles | ||
| 24 | * Target: ≥70% accuracy detecting misleading articles | ||
| 25 | * Cost: <$0.25 per NEW analysis (uncached) | ||
| 26 | * Cost: $0.00 for cached claim reuse | ||
| 27 | * Cache hit rate: ≥50% after 1,000 articles | ||
| 28 | * Processing time: <2 minutes (standard depth) | ||
| 29 | |||
| 30 | === Economic Model: === | ||
| 31 | |||
| 32 | * **Free tier:** $10 credit per month (~~40-140 articles depending on cache hits) | ||
| 33 | * **After limit:** Cache-only mode (instant, free access to cached claims) | ||
| 34 | * **Paid tier:** Unlimited new analyses | ||
| 35 | |||
| 36 | ---- | ||
| 37 | |||
| 38 | == 2. Architecture Overview == | ||
| 39 | |||
| 40 | === 2.1 3-Stage Pipeline with Caching === | ||
| 41 | |||
| 42 | FactHarbor POC1 uses a **3-stage architecture** designed for claim-level caching and cost efficiency: | ||
| 43 | |||
| 44 | {{mermaid}} | ||
| 45 | graph TD | ||
| 46 | A[Article Input] --> B[Stage 1: Extract Claims] | ||
| 47 | B --> C{For Each Claim} | ||
| 48 | C --> D[Check Cache] | ||
| 49 | D -->|Cache HIT| E[Return Cached Verdict] | ||
| 50 | D -->|Cache MISS| F[Stage 2: Analyze Claim] | ||
| 51 | F --> G[Store in Cache] | ||
| 52 | G --> E | ||
| 53 | E --> H[Stage 3: Holistic Assessment] | ||
| 54 | H --> I[Final Report] | ||
| 55 | {{/mermaid}} | ||
| 56 | |||
| 57 | ==== Stage 1: Claim Extraction (Haiku, no cache) ==== | ||
| 58 | |||
| 59 | * **Input:** Article text | ||
| 60 | * **Output:** 5 canonical claims (normalized, deduplicated) | ||
| 61 | * **Model:** Claude Haiku 4.5.5 (default, configurable via LLM abstraction layer) | ||
| 62 | * **Cost:** $0.003 per article | ||
| 63 | * **Cache strategy:** No caching (article-specific) | ||
| 64 | |||
| 65 | ==== Stage 2: Claim Analysis (Sonnet, CACHED) ==== | ||
| 66 | |||
| 67 | * **Input:** Single canonical claim | ||
| 68 | * **Output:** Scenarios + Evidence + Verdicts | ||
| 69 | * **Model:** Claude Sonnet 4.5 (default, configurable via LLM abstraction layer) | ||
| 70 | * **Cost:** $0.081 per NEW claim | ||
| 71 | * **Cache strategy:** Redis, 90-day TTL | ||
| 72 | * **Cache key:** claim:v1norm1:{language}:{sha256(canonical_claim)} | ||
| 73 | |||
| 74 | ==== Stage 3: Holistic Assessment (Sonnet, no cache) ==== | ||
| 75 | |||
| 76 | * **Input:** Article + Claim verdicts (from cache or Stage 2) | ||
| 77 | * **Output:** Article verdict + Fallacies + Logic quality | ||
| 78 | * **Model:** Claude Sonnet 4.5 (default, configurable via LLM abstraction layer) | ||
| 79 | * **Cost:** $0.030 per article | ||
| 80 | * **Cache strategy:** No caching (article-specific) | ||
| 81 | |||
| 82 | |||
| 83 | |||
| 84 | **Note:** Stage 3 implements **Approach 1 (Single-Pass Holistic Analysis)** from the [[Article Verdict Problem>>Test.FactHarbor.Specification.POC.Article-Verdict-Problem]]. While claim analysis (Stage 2) is cached for efficiency, the holistic assessment maintains the integrated evaluation philosophy of Approach 1. | ||
| 85 | |||
| 86 | === Total Cost Formula: === | ||
| 87 | |||
| 88 | {{{Cost = $0.003 (extraction) + (N_new_claims × $0.081) + $0.030 (holistic) | ||
| 89 | |||
| 90 | Examples: | ||
| 91 | - 0 new claims (100% cache hit): $0.033 | ||
| 92 | - 1 new claim (80% cache hit): $0.114 | ||
| 93 | - 3 new claims (40% cache hit): $0.276 | ||
| 94 | - 5 new claims (0% cache hit): $0.438 | ||
| 95 | }}} | ||
| 96 | |||
| 97 | ---- | ||
| 98 | |||
| 99 | === 2.2 User Tier System === | ||
| 100 | |||
| 101 | |=Tier|=Monthly Credit|=After Limit|=Cache Access|=Analytics | ||
| 102 | |**Free**|$10|Cache-only mode|✅ Full|Basic | ||
| 103 | |**Pro** (future)|$50|Continues|✅ Full|Advanced | ||
| 104 | |**Enterprise** (future)|Custom|Continues|✅ Full + Priority|Full | ||
| 105 | |||
| 106 | **Free Tier Economics:** | ||
| 107 | |||
| 108 | * $10 credit = 40-140 articles analyzed (depending on cache hit rate) | ||
| 109 | * Average 70 articles/month at 70% cache hit rate | ||
| 110 | * After limit: Cache-only mode | ||
| 111 | |||
| 112 | ---- | ||
| 113 | |||
| 114 | === 2.3 Cache-Only Mode (Free Tier Feature) === | ||
| 115 | |||
| 116 | When free users reach their $10 monthly limit, they enter **Cache-Only Mode**: | ||
| 117 | |||
| 118 | |||
| 119 | |||
| 120 | ==== Stage 3: Holistic Assessment - Complete Specification ==== | ||
| 121 | |||
| 122 | ===== 3.3.1 Overview ===== | ||
| 123 | |||
| 124 | **Purpose:** Synthesize individual claim analyses into an overall article assessment, identifying logical fallacies, reasoning quality, and publication readiness. | ||
| 125 | |||
| 126 | **Approach:** **Single-Pass Holistic Analysis** (Approach 1 from Comparison Matrix) | ||
| 127 | |||
| 128 | **Why This Approach for POC1:** | ||
| 129 | * ✅ **1 API call** (vs 2 for Two-Pass or Judge) | ||
| 130 | * ✅ **Low cost** ($0.030 per article) | ||
| 131 | * ✅ **Fast** (4-6 seconds) | ||
| 132 | * ✅ **Low complexity** (simple implementation) | ||
| 133 | * ⚠️ **Medium reliability** (acceptable for POC1, will improve in POC2/Production) | ||
| 134 | |||
| 135 | **Alternative Approaches Considered:** | ||
| 136 | |||
| 137 | |= Approach |= API Calls |= Cost |= Speed |= Complexity |= Reliability |= Best For | ||
| 138 | | **1. Single-Pass** ⭐ | 1 | 💰 Low | ⚡ Fast | 🟢 Low | ⚠️ Medium | **POC1** | ||
| 139 | | 2. Two-Pass | 2 | 💰💰 Med | 🐢 Slow | 🟡 Med | ✅ High | POC2/Prod | ||
| 140 | | 3. Structured | 1 | 💰 Low | ⚡ Fast | 🟡 Med | ✅ High | POC1 (alternative) | ||
| 141 | | 4. Weighted | 1 | 💰 Low | ⚡ Fast | 🟢 Low | ⚠️ Medium | POC1 (alternative) | ||
| 142 | | 5. Heuristics | 1 | 💰 Lowest | ⚡⚡ Fastest | 🟡 Med | ⚠️ Medium | Any | ||
| 143 | | 6. Hybrid | 1 | 💰 Low | ⚡ Fast | 🔴 Med-High | ✅ High | POC2 | ||
| 144 | | 7. Judge | 2 | 💰💰 Med | 🐢 Slow | 🟡 Med | ✅ High | Production | ||
| 145 | |||
| 146 | **POC1 Choice:** Approach 1 (Single-Pass) for speed and simplicity. Will upgrade to Approach 2 (Two-Pass) or 6 (Hybrid) in POC2 for higher reliability. | ||
| 147 | |||
| 148 | ===== 3.3.2 What Stage 3 Evaluates ===== | ||
| 149 | |||
| 150 | Stage 3 performs **integrated holistic analysis** considering: | ||
| 151 | |||
| 152 | **1. Claim-Level Aggregation:** | ||
| 153 | * Verdict distribution (how many TRUE vs FALSE vs DISPUTED) | ||
| 154 | * Average confidence across all claims | ||
| 155 | * Claim interdependencies (do claims support/contradict each other?) | ||
| 156 | * Critical claim identification (which claims are most important?) | ||
| 157 | |||
| 158 | **2. Contextual Factors:** | ||
| 159 | * **Source credibility**: Is the article from a reputable publisher? | ||
| 160 | * **Author expertise**: Does the author have relevant credentials? | ||
| 161 | * **Publication date**: Is information current or outdated? | ||
| 162 | * **Claim coherence**: Do claims form a logical narrative? | ||
| 163 | * **Missing context**: Are important caveats or qualifications missing? | ||
| 164 | |||
| 165 | **3. Logical Fallacies:** | ||
| 166 | * **Cherry-picking**: Selective evidence presentation | ||
| 167 | * **False equivalence**: Treating unequal things as equal | ||
| 168 | * **Straw man**: Misrepresenting opposing arguments | ||
| 169 | * **Ad hominem**: Attacking person instead of argument | ||
| 170 | * **Slippery slope**: Assuming extreme consequences without justification | ||
| 171 | * **Circular reasoning**: Conclusion assumes premise | ||
| 172 | * **False dichotomy**: Presenting only two options when more exist | ||
| 173 | |||
| 174 | **4. Reasoning Quality:** | ||
| 175 | * **Evidence strength**: Quality and quantity of supporting evidence | ||
| 176 | * **Logical coherence**: Arguments follow logically | ||
| 177 | * **Transparency**: Assumptions and limitations acknowledged | ||
| 178 | * **Nuance**: Complexity and uncertainty appropriately addressed | ||
| 179 | |||
| 180 | **5. Publication Readiness:** | ||
| 181 | * **Risk tier assignment**: A (high risk), B (medium), or C (low risk) | ||
| 182 | * **Publication mode**: DRAFT_ONLY, AI_GENERATED, or HUMAN_REVIEWED | ||
| 183 | * **Required disclaimers**: What warnings should accompany this content? | ||
| 184 | |||
| 185 | ===== 3.3.3 Implementation: Single-Pass Approach ===== | ||
| 186 | |||
| 187 | **Input:** | ||
| 188 | * Original article text (full content) | ||
| 189 | * Stage 2 claim analyses (array of ClaimAnalysis objects) | ||
| 190 | * Article metadata (URL, title, author, date, source) | ||
| 191 | |||
| 192 | **Processing:** | ||
| 193 | |||
| 194 | {{code language="python"}} | ||
| 195 | # Pseudo-code for Stage 3 (Single-Pass) | ||
| 196 | |||
| 197 | def stage3_holistic_assessment(article, claim_analyses, metadata): | ||
| 198 | """ | ||
| 199 | Single-pass holistic assessment using Claude Sonnet 4.5. | ||
| 200 | |||
| 201 | Approach 1: One comprehensive prompt that asks the LLM to: | ||
| 202 | 1. Review all claim verdicts | ||
| 203 | 2. Identify patterns and dependencies | ||
| 204 | 3. Detect logical fallacies | ||
| 205 | 4. Assess reasoning quality | ||
| 206 | 5. Determine credibility score and risk tier | ||
| 207 | 6. Generate publication recommendations | ||
| 208 | """ | ||
| 209 | |||
| 210 | # Construct comprehensive prompt | ||
| 211 | prompt = f""" | ||
| 212 | You are analyzing an article for factual accuracy and logical reasoning. | ||
| 213 | |||
| 214 | ARTICLE METADATA: | ||
| 215 | - Title: {metadata['title']} | ||
| 216 | - Source: {metadata['source']} | ||
| 217 | - Date: {metadata['date']} | ||
| 218 | - Author: {metadata['author']} | ||
| 219 | |||
| 220 | ARTICLE TEXT: | ||
| 221 | {article} | ||
| 222 | |||
| 223 | INDIVIDUAL CLAIM ANALYSES: | ||
| 224 | {format_claim_analyses(claim_analyses)} | ||
| 225 | |||
| 226 | YOUR TASK: | ||
| 227 | Perform a holistic assessment considering: | ||
| 228 | |||
| 229 | 1. CLAIM AGGREGATION: | ||
| 230 | - Review the verdict for each claim | ||
| 231 | - Identify any interdependencies between claims | ||
| 232 | - Determine which claims are most critical to the article's thesis | ||
| 233 | |||
| 234 | 2. CONTEXTUAL EVALUATION: | ||
| 235 | - Assess source credibility | ||
| 236 | - Evaluate author expertise | ||
| 237 | - Consider publication timeliness | ||
| 238 | - Identify missing context or important caveats | ||
| 239 | |||
| 240 | 3. LOGICAL FALLACIES: | ||
| 241 | - Identify any logical fallacies present | ||
| 242 | - For each fallacy, provide: | ||
| 243 | * Type of fallacy | ||
| 244 | * Where it occurs in the article | ||
| 245 | * Why it's problematic | ||
| 246 | * Severity (minor/moderate/severe) | ||
| 247 | |||
| 248 | 4. REASONING QUALITY: | ||
| 249 | - Evaluate evidence strength | ||
| 250 | - Assess logical coherence | ||
| 251 | - Check for transparency in assumptions | ||
| 252 | - Evaluate handling of nuance and uncertainty | ||
| 253 | |||
| 254 | 5. CREDIBILITY SCORING: | ||
| 255 | - Calculate overall credibility score (0.0-1.0) | ||
| 256 | - Assign risk tier: | ||
| 257 | * A (high risk): ≤0.5 credibility OR severe fallacies | ||
| 258 | * B (medium risk): 0.5-0.8 credibility OR moderate issues | ||
| 259 | * C (low risk): >0.8 credibility AND no significant issues | ||
| 260 | |||
| 261 | 6. PUBLICATION RECOMMENDATIONS: | ||
| 262 | - Determine publication mode: | ||
| 263 | * DRAFT_ONLY: Tier A, multiple severe issues | ||
| 264 | * AI_GENERATED: Tier B/C, acceptable quality with disclaimers | ||
| 265 | * HUMAN_REVIEWED: Complex or borderline cases | ||
| 266 | - List required disclaimers | ||
| 267 | - Explain decision rationale | ||
| 268 | |||
| 269 | OUTPUT FORMAT: | ||
| 270 | Return a JSON object matching the ArticleAssessment schema. | ||
| 271 | """ | ||
| 272 | |||
| 273 | # Call LLM | ||
| 274 | response = llm_client.complete( | ||
| 275 | model="claude-sonnet-4-5-20250929", | ||
| 276 | prompt=prompt, | ||
| 277 | max_tokens=4000, | ||
| 278 | response_format="json" | ||
| 279 | ) | ||
| 280 | |||
| 281 | # Parse and validate response | ||
| 282 | assessment = parse_json(response.content) | ||
| 283 | validate_article_assessment_schema(assessment) | ||
| 284 | |||
| 285 | return assessment | ||
| 286 | {{/code}} | ||
| 287 | |||
| 288 | **Prompt Engineering Notes:** | ||
| 289 | |||
| 290 | 1. **Structured Instructions**: Break down task into 6 clear sections | ||
| 291 | 2. **Context-Rich**: Provide article + all claim analyses + metadata | ||
| 292 | 3. **Explicit Criteria**: Define credibility scoring and risk tiers precisely | ||
| 293 | 4. **JSON Schema**: Request structured output matching ArticleAssessment schema | ||
| 294 | 5. **Examples** (in production): Include 2-3 example assessments for consistency | ||
| 295 | |||
| 296 | ===== 3.3.4 Credibility Scoring Algorithm ===== | ||
| 297 | |||
| 298 | **Base Score Calculation:** | ||
| 299 | |||
| 300 | {{code language="python"}} | ||
| 301 | def calculate_credibility_score(claim_analyses, fallacies, contextual_factors): | ||
| 302 | """ | ||
| 303 | Calculate overall credibility score (0.0-1.0). | ||
| 304 | |||
| 305 | This is a GUIDELINE for the LLM, not strict code. | ||
| 306 | The LLM has flexibility to adjust based on context. | ||
| 307 | """ | ||
| 308 | |||
| 309 | # 1. Claim Verdict Score (60% weight) | ||
| 310 | verdict_weights = { | ||
| 311 | "TRUE": 1.0, | ||
| 312 | "PARTIALLY_TRUE": 0.7, | ||
| 313 | "DISPUTED": 0.5, | ||
| 314 | "UNSUPPORTED": 0.3, | ||
| 315 | "FALSE": 0.0, | ||
| 316 | "UNVERIFIABLE": 0.4 | ||
| 317 | } | ||
| 318 | |||
| 319 | claim_scores = [ | ||
| 320 | verdict_weights[c.verdict.label] * c.verdict.confidence | ||
| 321 | for c in claim_analyses | ||
| 322 | ] | ||
| 323 | avg_claim_score = sum(claim_scores) / len(claim_scores) | ||
| 324 | claim_component = avg_claim_score * 0.6 | ||
| 325 | |||
| 326 | # 2. Fallacy Penalty (20% weight) | ||
| 327 | fallacy_penalties = { | ||
| 328 | "minor": -0.05, | ||
| 329 | "moderate": -0.15, | ||
| 330 | "severe": -0.30 | ||
| 331 | } | ||
| 332 | |||
| 333 | fallacy_score = 1.0 | ||
| 334 | for fallacy in fallacies: | ||
| 335 | fallacy_score += fallacy_penalties[fallacy.severity] | ||
| 336 | |||
| 337 | fallacy_score = max(0.0, min(1.0, fallacy_score)) | ||
| 338 | fallacy_component = fallacy_score * 0.2 | ||
| 339 | |||
| 340 | # 3. Contextual Factors (20% weight) | ||
| 341 | context_adjustments = { | ||
| 342 | "source_credibility": {"positive": +0.1, "neutral": 0, "negative": -0.1}, | ||
| 343 | "author_expertise": {"positive": +0.1, "neutral": 0, "negative": -0.1}, | ||
| 344 | "timeliness": {"positive": +0.05, "neutral": 0, "negative": -0.05}, | ||
| 345 | "transparency": {"positive": +0.05, "neutral": 0, "negative": -0.05} | ||
| 346 | } | ||
| 347 | |||
| 348 | context_score = 1.0 | ||
| 349 | for factor in contextual_factors: | ||
| 350 | adjustment = context_adjustments.get(factor.factor, {}).get(factor.impact, 0) | ||
| 351 | context_score += adjustment | ||
| 352 | |||
| 353 | context_score = max(0.0, min(1.0, context_score)) | ||
| 354 | context_component = context_score * 0.2 | ||
| 355 | |||
| 356 | # 4. Combine components | ||
| 357 | final_score = claim_component + fallacy_component + context_component | ||
| 358 | |||
| 359 | # 5. Apply confidence modifier | ||
| 360 | avg_confidence = sum(c.verdict.confidence for c in claim_analyses) / len(claim_analyses) | ||
| 361 | final_score = final_score * (0.8 + 0.2 * avg_confidence) | ||
| 362 | |||
| 363 | return max(0.0, min(1.0, final_score)) | ||
| 364 | {{/code}} | ||
| 365 | |||
| 366 | **Note:** This algorithm is a **guideline** provided to the LLM in the system prompt. The LLM has flexibility to adjust based on specific article context, but should generally follow this structure for consistency. | ||
| 367 | |||
| 368 | ===== 3.3.5 Risk Tier Assignment ===== | ||
| 369 | |||
| 370 | **Automatic Risk Tier Rules:** | ||
| 371 | |||
| 372 | {{code}} | ||
| 373 | Risk Tier A (High Risk - Requires Review): | ||
| 374 | - Credibility score ≤ 0.5, OR | ||
| 375 | - Any severe fallacies detected, OR | ||
| 376 | - Multiple (3+) moderate fallacies, OR | ||
| 377 | - 50%+ of claims are FALSE or UNSUPPORTED | ||
| 378 | |||
| 379 | Risk Tier B (Medium Risk - May Publish with Disclaimers): | ||
| 380 | - Credibility score 0.5-0.8, OR | ||
| 381 | - 1-2 moderate fallacies, OR | ||
| 382 | - 20-49% of claims are DISPUTED or PARTIALLY_TRUE | ||
| 383 | |||
| 384 | Risk Tier C (Low Risk - Safe to Publish): | ||
| 385 | - Credibility score > 0.8, AND | ||
| 386 | - No severe or moderate fallacies, AND | ||
| 387 | - <20% disputed/problematic claims, AND | ||
| 388 | - No critical missing context | ||
| 389 | {{/code}} | ||
| 390 | |||
| 391 | ===== 3.3.6 Output: ArticleAssessment Schema ===== | ||
| 392 | |||
| 393 | (See Stage 3 Output Schema section above for complete JSON schema) | ||
| 394 | |||
| 395 | ===== 3.3.7 Performance Metrics ===== | ||
| 396 | |||
| 397 | **POC1 Targets:** | ||
| 398 | * **Processing time**: 4-6 seconds per article | ||
| 399 | * **Cost**: $0.030 per article (Sonnet 4.5 tokens) | ||
| 400 | * **Quality**: 70-80% agreement with human reviewers (acceptable for POC) | ||
| 401 | * **API calls**: 1 per article | ||
| 402 | |||
| 403 | **Future Improvements (POC2/Production):** | ||
| 404 | * Upgrade to Two-Pass (Approach 2): +15% accuracy, +$0.020 cost | ||
| 405 | * Add human review sampling: 10% of Tier B articles | ||
| 406 | * Implement Judge approach (Approach 7) for Tier A: Highest quality | ||
| 407 | |||
| 408 | ===== 3.3.8 Example Stage 3 Execution ===== | ||
| 409 | |||
| 410 | **Input:** | ||
| 411 | * Article: "Biden won the 2020 election" | ||
| 412 | * Claim analyses: [{claim: "Biden won", verdict: "TRUE", confidence: 0.95}] | ||
| 413 | |||
| 414 | **Stage 3 Processing:** | ||
| 415 | 1. Analyzes single claim with high confidence | ||
| 416 | 2. Checks for contextual factors (source credibility) | ||
| 417 | 3. Searches for logical fallacies (none found) | ||
| 418 | 4. Calculates credibility: 0.6 * 0.95 + 0.2 * 1.0 + 0.2 * 1.0 = 0.97 | ||
| 419 | 5. Assigns risk tier: C (low risk) | ||
| 420 | 6. Recommends: AI_GENERATED publication mode | ||
| 421 | |||
| 422 | **Output:** | ||
| 423 | ```json | ||
| 424 | { | ||
| 425 | "article_id": "a1", | ||
| 426 | "overall_assessment": { | ||
| 427 | "credibility_score": 0.97, | ||
| 428 | "risk_tier": "C", | ||
| 429 | "summary": "Article makes single verifiable claim with strong evidence support", | ||
| 430 | "confidence": 0.95 | ||
| 431 | }, | ||
| 432 | "claim_aggregation": { | ||
| 433 | "total_claims": 1, | ||
| 434 | "verdict_distribution": {"TRUE": 1}, | ||
| 435 | "avg_confidence": 0.95 | ||
| 436 | }, | ||
| 437 | "contextual_factors": [ | ||
| 438 | {"factor": "source_credibility", "impact": "positive", "description": "Reputable news source"} | ||
| 439 | ], | ||
| 440 | "recommendations": { | ||
| 441 | "publication_mode": "AI_GENERATED", | ||
| 442 | "requires_review": false, | ||
| 443 | "suggested_disclaimers": [] | ||
| 444 | } | ||
| 445 | } | ||
| 446 | ``` | ||
| 447 | |||
| 448 | ==== What Cache-Only Mode Provides: ==== | ||
| 449 | |||
| 450 | ✅ **Claim Extraction (Platform-Funded):** | ||
| 451 | |||
| 452 | * Stage 1 extraction runs at $0.003 per article | ||
| 453 | * **Cost: Absorbed by platform** (not charged to user credit) | ||
| 454 | * Rationale: Extraction is necessary to check cache, and cost is negligible | ||
| 455 | * Rate limit: Max 50 extractions/day in cache-only mode (prevents abuse) | ||
| 456 | |||
| 457 | ✅ **Instant Access to Cached Claims:** | ||
| 458 | |||
| 459 | * Any claim that exists in cache → Full verdict returned | ||
| 460 | * Cost: $0 (no LLM calls) | ||
| 461 | * Response time: <100ms | ||
| 462 | |||
| 463 | ✅ **Partial Article Analysis:** | ||
| 464 | |||
| 465 | * Check each claim against cache | ||
| 466 | * Return verdicts for ALL cached claims | ||
| 467 | * For uncached claims: Return "status": "cache_miss" | ||
| 468 | |||
| 469 | ✅ **Cache Coverage Report:** | ||
| 470 | |||
| 471 | * "3 of 5 claims available in cache (60% coverage)" | ||
| 472 | * Links to cached analyses | ||
| 473 | * Estimated cost to complete: $0.162 (2 new claims) | ||
| 474 | |||
| 475 | ❌ **Not Available in Cache-Only Mode:** | ||
| 476 | |||
| 477 | * New claim analysis (Stage 2 LLM calls blocked) | ||
| 478 | * Full holistic assessment (Stage 3 blocked if any claims missing) | ||
| 479 | |||
| 480 | ==== User Experience Example: ==== | ||
| 481 | |||
| 482 | {{{{ | ||
| 483 | "status": "cache_only_mode", | ||
| 484 | "message": "Monthly credit limit reached. Showing cached results only.", | ||
| 485 | "cache_coverage": { | ||
| 486 | "claims_total": 5, | ||
| 487 | "claims_cached": 3, | ||
| 488 | "claims_missing": 2, | ||
| 489 | "coverage_percent": 60 | ||
| 490 | }, | ||
| 491 | "cached_claims": [ | ||
| 492 | {"claim_id": "C1", "verdict": "Likely", "confidence": 0.82}, | ||
| 493 | {"claim_id": "C2", "verdict": "Highly Likely", "confidence": 0.91}, | ||
| 494 | {"claim_id": "C4", "verdict": "Unclear", "confidence": 0.55} | ||
| 495 | ], | ||
| 496 | "missing_claims": [ | ||
| 497 | {"claim_id": "C3", "claim_text": "...", "estimated_cost": "$0.081"}, | ||
| 498 | {"claim_id": "C5", "claim_text": "...", "estimated_cost": "$0.081"} | ||
| 499 | ], | ||
| 500 | "upgrade_options": { | ||
| 501 | "top_up": "$5 for 20-70 more articles", | ||
| 502 | "pro_tier": "$50/month unlimited" | ||
| 503 | } | ||
| 504 | } | ||
| 505 | }}} | ||
| 506 | |||
| 507 | **Design Rationale:** | ||
| 508 | |||
| 509 | * Free users still get value (cached claims often answer their question) | ||
| 510 | * Demonstrates FactHarbor's value (partial results encourage upgrade) | ||
| 511 | * Sustainable for platform (no additional cost) | ||
| 512 | * Fair to all users (everyone contributes to cache) | ||
| 513 | |||
| 514 | ---- | ||
| 515 | |||
| 516 | |||
| 517 | |||
| 518 | == 6. LLM Abstraction Layer == | ||
| 519 | |||
| 520 | === 6.1 Design Principle === | ||
| 521 | |||
| 522 | **FactHarbor uses provider-agnostic LLM abstraction** to avoid vendor lock-in and enable: | ||
| 523 | |||
| 524 | * **Provider switching:** Change LLM providers without code changes | ||
| 525 | * **Cost optimization:** Use different providers for different stages | ||
| 526 | * **Resilience:** Automatic fallback if primary provider fails | ||
| 527 | * **Cross-checking:** Compare outputs from multiple providers | ||
| 528 | * **A/B testing:** Test new models without deployment changes | ||
| 529 | |||
| 530 | **Implementation:** All LLM calls go through an abstraction layer that routes to configured providers. | ||
| 531 | |||
| 532 | ---- | ||
| 533 | |||
| 534 | === 6.2 LLM Provider Interface === | ||
| 535 | |||
| 536 | **Abstract Interface:** | ||
| 537 | |||
| 538 | {{{ | ||
| 539 | interface LLMProvider { | ||
| 540 | // Core methods | ||
| 541 | complete(prompt: string, options: CompletionOptions): Promise<CompletionResponse> | ||
| 542 | stream(prompt: string, options: CompletionOptions): AsyncIterator<StreamChunk> | ||
| 543 | |||
| 544 | // Provider metadata | ||
| 545 | getName(): string | ||
| 546 | getMaxTokens(): number | ||
| 547 | getCostPer1kTokens(): { input: number, output: number } | ||
| 548 | |||
| 549 | // Health check | ||
| 550 | isAvailable(): Promise<boolean> | ||
| 551 | } | ||
| 552 | |||
| 553 | interface CompletionOptions { | ||
| 554 | model?: string | ||
| 555 | maxTokens?: number | ||
| 556 | temperature?: number | ||
| 557 | stopSequences?: string[] | ||
| 558 | systemPrompt?: string | ||
| 559 | } | ||
| 560 | }}} | ||
| 561 | |||
| 562 | ---- | ||
| 563 | |||
| 564 | === 6.3 Supported Providers (POC1) === | ||
| 565 | |||
| 566 | **Primary Provider (Default):** | ||
| 567 | |||
| 568 | * **Anthropic Claude API** | ||
| 569 | * Models: Claude Haiku 4.5, Claude Sonnet 4.5, Claude Opus 4 | ||
| 570 | * Used by default in POC1 | ||
| 571 | * Best quality for holistic analysis | ||
| 572 | |||
| 573 | **Secondary Providers (Future):** | ||
| 574 | |||
| 575 | * **OpenAI API** | ||
| 576 | * Models: GPT-4o, GPT-4o-mini | ||
| 577 | * For cost comparison | ||
| 578 | |||
| 579 | * **Google Vertex AI** | ||
| 580 | * Models: Gemini 1.5 Pro, Gemini 1.5 Flash | ||
| 581 | * For diversity in evidence gathering | ||
| 582 | |||
| 583 | * **Local Models** (Post-POC) | ||
| 584 | * Models: Llama 3.1, Mistral | ||
| 585 | * For privacy-sensitive deployments | ||
| 586 | |||
| 587 | ---- | ||
| 588 | |||
| 589 | === 6.4 Provider Configuration === | ||
| 590 | |||
| 591 | **Environment Variables:** | ||
| 592 | |||
| 593 | {{{ | ||
| 594 | # Primary provider | ||
| 595 | LLM_PRIMARY_PROVIDER=anthropic | ||
| 596 | ANTHROPIC_API_KEY=sk-ant-... | ||
| 597 | |||
| 598 | # Fallback provider | ||
| 599 | LLM_FALLBACK_PROVIDER=openai | ||
| 600 | OPENAI_API_KEY=sk-... | ||
| 601 | |||
| 602 | # Provider selection per stage | ||
| 603 | LLM_STAGE1_PROVIDER=anthropic | ||
| 604 | LLM_STAGE1_MODEL=claude-haiku-4 | ||
| 605 | LLM_STAGE2_PROVIDER=anthropic | ||
| 606 | LLM_STAGE2_MODEL=claude-sonnet-4-5-20250929 | ||
| 607 | LLM_STAGE3_PROVIDER=anthropic | ||
| 608 | LLM_STAGE3_MODEL=claude-sonnet-4-5-20250929 | ||
| 609 | |||
| 610 | # Cost limits | ||
| 611 | LLM_MAX_COST_PER_REQUEST=1.00 | ||
| 612 | }}} | ||
| 613 | |||
| 614 | **Database Configuration (Alternative):** | ||
| 615 | |||
| 616 | {{{{ | ||
| 617 | { | ||
| 618 | "providers": [ | ||
| 619 | { | ||
| 620 | "name": "anthropic", | ||
| 621 | "api_key_ref": "vault://anthropic-api-key", | ||
| 622 | "enabled": true, | ||
| 623 | "priority": 1 | ||
| 624 | }, | ||
| 625 | { | ||
| 626 | "name": "openai", | ||
| 627 | "api_key_ref": "vault://openai-api-key", | ||
| 628 | "enabled": true, | ||
| 629 | "priority": 2 | ||
| 630 | } | ||
| 631 | ], | ||
| 632 | "stage_config": { | ||
| 633 | "stage1": { | ||
| 634 | "provider": "anthropic", | ||
| 635 | "model": "claude-haiku-4-5-20251001", | ||
| 636 | "max_tokens": 4096, | ||
| 637 | "temperature": 0.0 | ||
| 638 | }, | ||
| 639 | "stage2": { | ||
| 640 | "provider": "anthropic", | ||
| 641 | "model": "claude-sonnet-4-5-20250929", | ||
| 642 | "max_tokens": 16384, | ||
| 643 | "temperature": 0.3 | ||
| 644 | }, | ||
| 645 | "stage3": { | ||
| 646 | "provider": "anthropic", | ||
| 647 | "model": "claude-sonnet-4-5-20250929", | ||
| 648 | "max_tokens": 8192, | ||
| 649 | "temperature": 0.2 | ||
| 650 | } | ||
| 651 | } | ||
| 652 | } | ||
| 653 | }}} | ||
| 654 | |||
| 655 | ---- | ||
| 656 | |||
| 657 | === 6.5 Stage-Specific Models (POC1 Defaults) === | ||
| 658 | |||
| 659 | **Stage 1: Claim Extraction** | ||
| 660 | |||
| 661 | * **Default:** Anthropic Claude Haiku 4.5 | ||
| 662 | * **Alternative:** OpenAI GPT-4o-mini, Google Gemini 1.5 Flash | ||
| 663 | * **Rationale:** Fast, cheap, simple task | ||
| 664 | * **Cost:** ~$0.003 per article | ||
| 665 | |||
| 666 | **Stage 2: Claim Analysis** (CACHEABLE) | ||
| 667 | |||
| 668 | * **Default:** Anthropic Claude Sonnet 4.5 | ||
| 669 | * **Alternative:** OpenAI GPT-4o, Google Gemini 1.5 Pro | ||
| 670 | * **Rationale:** High-quality analysis, cached 90 days | ||
| 671 | * **Cost:** ~$0.081 per NEW claim | ||
| 672 | |||
| 673 | **Stage 3: Holistic Assessment** | ||
| 674 | |||
| 675 | * **Default:** Anthropic Claude Sonnet 4.5 | ||
| 676 | * **Alternative:** OpenAI GPT-4o, Claude Opus 4 (for high-stakes) | ||
| 677 | * **Rationale:** Complex reasoning, logical fallacy detection | ||
| 678 | * **Cost:** ~$0.030 per article | ||
| 679 | |||
| 680 | **Cost Comparison (Example):** | ||
| 681 | |||
| 682 | |=Stage|=Anthropic (Default)|=OpenAI Alternative|=Google Alternative | ||
| 683 | |Stage 1|Claude Haiku 4.5.5 ($0.003)|GPT-4o-mini ($0.002)|Gemini Flash ($0.002) | ||
| 684 | |Stage 2|Claude Sonnet 4.5 ($0.081)|GPT-4o ($0.045)|Gemini Pro ($0.050) | ||
| 685 | |Stage 3|Claude Sonnet 4.5 ($0.030)|GPT-4o ($0.018)|Gemini Pro ($0.020) | ||
| 686 | |**Total (0% cache)**|**$0.114**|**$0.065**|**$0.072** | ||
| 687 | |||
| 688 | **Note:** POC1 uses Anthropic exclusively for consistency. Multi-provider support planned for POC2. | ||
| 689 | |||
| 690 | ---- | ||
| 691 | |||
| 692 | === 6.6 Failover Strategy === | ||
| 693 | |||
| 694 | **Automatic Failover:** | ||
| 695 | |||
| 696 | {{{ | ||
| 697 | async function completeLLM(stage: string, prompt: string): Promise<string> { | ||
| 698 | const primaryProvider = getProviderForStage(stage) | ||
| 699 | const fallbackProvider = getFallbackProvider() | ||
| 700 | |||
| 701 | try { | ||
| 702 | return await primaryProvider.complete(prompt) | ||
| 703 | } catch (error) { | ||
| 704 | if (error.type === 'rate_limit' || error.type === 'service_unavailable') { | ||
| 705 | logger.warn(`Primary provider failed, using fallback`) | ||
| 706 | return await fallbackProvider.complete(prompt) | ||
| 707 | } | ||
| 708 | throw error | ||
| 709 | } | ||
| 710 | } | ||
| 711 | }}} | ||
| 712 | |||
| 713 | **Fallback Priority:** | ||
| 714 | |||
| 715 | 1. **Primary:** Configured provider for stage | ||
| 716 | 2. **Secondary:** Fallback provider (if configured) | ||
| 717 | 3. **Cache:** Return cached result (if available for Stage 2) | ||
| 718 | 4. **Error:** Return 503 Service Unavailable | ||
| 719 | |||
| 720 | ---- | ||
| 721 | |||
| 722 | === 6.7 Provider Selection API === | ||
| 723 | |||
| 724 | **Admin Endpoint:** POST /admin/v1/llm/configure | ||
| 725 | |||
| 726 | **Update provider for specific stage:** | ||
| 727 | |||
| 728 | {{{{ | ||
| 729 | { | ||
| 730 | "stage": "stage2", | ||
| 731 | "provider": "openai", | ||
| 732 | "model": "gpt-4o", | ||
| 733 | "max_tokens": 16384, | ||
| 734 | "temperature": 0.3 | ||
| 735 | } | ||
| 736 | }}} | ||
| 737 | |||
| 738 | **Response:** 200 OK | ||
| 739 | |||
| 740 | {{{{ | ||
| 741 | { | ||
| 742 | "message": "LLM configuration updated", | ||
| 743 | "stage": "stage2", | ||
| 744 | "previous": { | ||
| 745 | "provider": "anthropic", | ||
| 746 | "model": "claude-sonnet-4-5-20250929" | ||
| 747 | }, | ||
| 748 | "current": { | ||
| 749 | "provider": "openai", | ||
| 750 | "model": "gpt-4o" | ||
| 751 | }, | ||
| 752 | "cost_impact": { | ||
| 753 | "previous_cost_per_claim": 0.081, | ||
| 754 | "new_cost_per_claim": 0.045, | ||
| 755 | "savings_percent": 44 | ||
| 756 | } | ||
| 757 | } | ||
| 758 | }}} | ||
| 759 | |||
| 760 | **Get current configuration:** | ||
| 761 | |||
| 762 | GET /admin/v1/llm/config | ||
| 763 | |||
| 764 | {{{{ | ||
| 765 | { | ||
| 766 | "providers": ["anthropic", "openai"], | ||
| 767 | "primary": "anthropic", | ||
| 768 | "fallback": "openai", | ||
| 769 | "stages": { | ||
| 770 | "stage1": { | ||
| 771 | "provider": "anthropic", | ||
| 772 | "model": "claude-haiku-4-5-20251001", | ||
| 773 | "cost_per_request": 0.003 | ||
| 774 | }, | ||
| 775 | "stage2": { | ||
| 776 | "provider": "anthropic", | ||
| 777 | "model": "claude-sonnet-4-5-20250929", | ||
| 778 | "cost_per_new_claim": 0.081 | ||
| 779 | }, | ||
| 780 | "stage3": { | ||
| 781 | "provider": "anthropic", | ||
| 782 | "model": "claude-sonnet-4-5-20250929", | ||
| 783 | "cost_per_request": 0.030 | ||
| 784 | } | ||
| 785 | } | ||
| 786 | } | ||
| 787 | }}} | ||
| 788 | |||
| 789 | ---- | ||
| 790 | |||
| 791 | === 6.8 Implementation Notes === | ||
| 792 | |||
| 793 | **Provider Adapter Pattern:** | ||
| 794 | |||
| 795 | {{{ | ||
| 796 | class AnthropicProvider implements LLMProvider { | ||
| 797 | async complete(prompt: string, options: CompletionOptions) { | ||
| 798 | const response = await anthropic.messages.create({ | ||
| 799 | model: options.model || 'claude-sonnet-4-5-20250929', | ||
| 800 | max_tokens: options.maxTokens || 4096, | ||
| 801 | messages: [{ role: 'user', content: prompt }], | ||
| 802 | system: options.systemPrompt | ||
| 803 | }) | ||
| 804 | return response.content[0].text | ||
| 805 | } | ||
| 806 | } | ||
| 807 | |||
| 808 | class OpenAIProvider implements LLMProvider { | ||
| 809 | async complete(prompt: string, options: CompletionOptions) { | ||
| 810 | const response = await openai.chat.completions.create({ | ||
| 811 | model: options.model || 'gpt-4o', | ||
| 812 | max_tokens: options.maxTokens || 4096, | ||
| 813 | messages: [ | ||
| 814 | { role: 'system', content: options.systemPrompt }, | ||
| 815 | { role: 'user', content: prompt } | ||
| 816 | ] | ||
| 817 | }) | ||
| 818 | return response.choices[0].message.content | ||
| 819 | } | ||
| 820 | } | ||
| 821 | }}} | ||
| 822 | |||
| 823 | **Provider Registry:** | ||
| 824 | |||
| 825 | {{{ | ||
| 826 | const providers = new Map<string, LLMProvider>() | ||
| 827 | providers.set('anthropic', new AnthropicProvider()) | ||
| 828 | providers.set('openai', new OpenAIProvider()) | ||
| 829 | providers.set('google', new GoogleProvider()) | ||
| 830 | |||
| 831 | function getProvider(name: string): LLMProvider { | ||
| 832 | return providers.get(name) || providers.get(config.primaryProvider) | ||
| 833 | } | ||
| 834 | }}} | ||
| 835 | |||
| 836 | ---- | ||
| 837 | |||
| 838 | == 3. REST API Contract == | ||
| 839 | |||
| 840 | === 3.1 User Credit Tracking === | ||
| 841 | |||
| 842 | **Endpoint:** GET /v1/user/credit | ||
| 843 | |||
| 844 | **Response:** 200 OK | ||
| 845 | |||
| 846 | {{{{ | ||
| 847 | "user_id": "user_abc123", | ||
| 848 | "tier": "free", | ||
| 849 | "credit_limit": 10.00, | ||
| 850 | "credit_used": 7.42, | ||
| 851 | "credit_remaining": 2.58, | ||
| 852 | "reset_date": "2025-02-01T00:00:00Z", | ||
| 853 | "cache_only_mode": false, | ||
| 854 | "usage_stats": { | ||
| 855 | "articles_analyzed": 67, | ||
| 856 | "claims_from_cache": 189, | ||
| 857 | "claims_newly_analyzed": 113, | ||
| 858 | "cache_hit_rate": 0.626 | ||
| 859 | } | ||
| 860 | } | ||
| 861 | }}} | ||
| 862 | |||
| 863 | ---- | ||
| 864 | |||
| 865 | |||
| 866 | |||
| 867 | ==== Stage 2 Output Schema: ClaimAnalysis ==== | ||
| 868 | |||
| 869 | **Complete schema for each claim's analysis result:** | ||
| 870 | |||
| 871 | {{code language="json"}} | ||
| 872 | { | ||
| 873 | "claim_id": "claim_abc123", | ||
| 874 | "claim_text": "Biden won the 2020 election", | ||
| 875 | "scenarios": [ | ||
| 876 | { | ||
| 877 | "scenario_id": "scenario_1", | ||
| 878 | "description": "Interpreting 'won' as Electoral College victory", | ||
| 879 | "verdict": { | ||
| 880 | "label": "TRUE", | ||
| 881 | "confidence": 0.95, | ||
| 882 | "explanation": "Joe Biden won 306 electoral votes vs Trump's 232" | ||
| 883 | }, | ||
| 884 | "evidence": { | ||
| 885 | "supporting": [ | ||
| 886 | { | ||
| 887 | "text": "Biden certified with 306 electoral votes", | ||
| 888 | "source_url": "https://www.archives.gov/electoral-college/2020", | ||
| 889 | "source_title": "2020 Electoral College Results", | ||
| 890 | "credibility_score": 0.98 | ||
| 891 | } | ||
| 892 | ], | ||
| 893 | "opposing": [] | ||
| 894 | } | ||
| 895 | } | ||
| 896 | ], | ||
| 897 | "recommended_scenario": "scenario_1", | ||
| 898 | "metadata": { | ||
| 899 | "analysis_timestamp": "2024-12-24T18:00:00Z", | ||
| 900 | "model_used": "claude-sonnet-4-5-20250929", | ||
| 901 | "processing_time_seconds": 8.5 | ||
| 902 | } | ||
| 903 | } | ||
| 904 | {{/code}} | ||
| 905 | |||
| 906 | **Required Fields:** | ||
| 907 | * **claim_id**: Unique identifier matching Stage 1 output | ||
| 908 | * **claim_text**: The exact claim being analyzed | ||
| 909 | * **scenarios**: Array of interpretation scenarios (minimum 1) | ||
| 910 | * **scenario_id**: Unique ID for this scenario | ||
| 911 | * **description**: Clear interpretation of the claim | ||
| 912 | * **verdict**: Verdict object with label, confidence, explanation | ||
| 913 | * **evidence**: Supporting and opposing evidence arrays | ||
| 914 | * **recommended_scenario**: ID of the primary/recommended scenario | ||
| 915 | * **metadata**: Processing metadata (timestamp, model, timing) | ||
| 916 | |||
| 917 | **Optional Fields:** | ||
| 918 | * Additional context, warnings, or quality scores | ||
| 919 | |||
| 920 | **Minimum Viable Example:** | ||
| 921 | |||
| 922 | {{code language="json"}} | ||
| 923 | { | ||
| 924 | "claim_id": "c1", | ||
| 925 | "claim_text": "The sky is blue", | ||
| 926 | "scenarios": [{ | ||
| 927 | "scenario_id": "s1", | ||
| 928 | "description": "Under clear daytime conditions", | ||
| 929 | "verdict": {"label": "TRUE", "confidence": 0.99, "explanation": "Rayleigh scattering"}, | ||
| 930 | "evidence": {"supporting": [], "opposing": []} | ||
| 931 | }], | ||
| 932 | "recommended_scenario": "s1", | ||
| 933 | "metadata": {"analysis_timestamp": "2024-12-24T18:00:00Z"} | ||
| 934 | } | ||
| 935 | {{/code}} | ||
| 936 | |||
| 937 | |||
| 938 | |||
| 939 | ==== Stage 3 Output Schema: ArticleAssessment ==== | ||
| 940 | |||
| 941 | **Complete schema for holistic article-level assessment:** | ||
| 942 | |||
| 943 | {{code language="json"}} | ||
| 944 | { | ||
| 945 | "article_id": "article_xyz789", | ||
| 946 | "overall_assessment": { | ||
| 947 | "credibility_score": 0.72, | ||
| 948 | "risk_tier": "B", | ||
| 949 | "summary": "Article contains mostly accurate claims with one disputed claim requiring expert review", | ||
| 950 | "confidence": 0.85 | ||
| 951 | }, | ||
| 952 | "claim_aggregation": { | ||
| 953 | "total_claims": 5, | ||
| 954 | "verdict_distribution": { | ||
| 955 | "TRUE": 3, | ||
| 956 | "PARTIALLY_TRUE": 1, | ||
| 957 | "DISPUTED": 1, | ||
| 958 | "FALSE": 0, | ||
| 959 | "UNSUPPORTED": 0, | ||
| 960 | "UNVERIFIABLE": 0 | ||
| 961 | }, | ||
| 962 | "avg_confidence": 0.82 | ||
| 963 | }, | ||
| 964 | "contextual_factors": [ | ||
| 965 | { | ||
| 966 | "factor": "Source credibility", | ||
| 967 | "impact": "positive", | ||
| 968 | "description": "Published by reputable news organization" | ||
| 969 | }, | ||
| 970 | { | ||
| 971 | "factor": "Claim interdependence", | ||
| 972 | "impact": "neutral", | ||
| 973 | "description": "Claims are independent; no logical chains" | ||
| 974 | } | ||
| 975 | ], | ||
| 976 | "recommendations": { | ||
| 977 | "publication_mode": "AI_GENERATED", | ||
| 978 | "requires_review": false, | ||
| 979 | "review_reason": null, | ||
| 980 | "suggested_disclaimers": [ | ||
| 981 | "One claim (Claim 4) has conflicting expert opinions" | ||
| 982 | ] | ||
| 983 | }, | ||
| 984 | "metadata": { | ||
| 985 | "holistic_timestamp": "2024-12-24T18:00:10Z", | ||
| 986 | "model_used": "claude-sonnet-4-5-20250929", | ||
| 987 | "processing_time_seconds": 4.2, | ||
| 988 | "cache_used": false | ||
| 989 | } | ||
| 990 | } | ||
| 991 | {{/code}} | ||
| 992 | |||
| 993 | **Required Fields:** | ||
| 994 | * **article_id**: Unique identifier for this article | ||
| 995 | * **overall_assessment**: Top-level assessment | ||
| 996 | * **credibility_score**: 0.0-1.0 composite score | ||
| 997 | * **risk_tier**: A, B, or C (per AKEL quality gates) | ||
| 998 | * **summary**: Human-readable assessment | ||
| 999 | * **confidence**: How confident the holistic assessment is | ||
| 1000 | * **claim_aggregation**: Statistics across all claims | ||
| 1001 | * **total_claims**: Count of claims analyzed | ||
| 1002 | * **verdict_distribution**: Count per verdict label | ||
| 1003 | * **avg_confidence**: Average confidence across verdicts | ||
| 1004 | * **contextual_factors**: Array of contextual considerations | ||
| 1005 | * **recommendations**: Publication decision support | ||
| 1006 | * **publication_mode**: DRAFT_ONLY, AI_GENERATED, or HUMAN_REVIEWED | ||
| 1007 | * **requires_review**: Boolean flag | ||
| 1008 | * **suggested_disclaimers**: Array of disclaimer texts | ||
| 1009 | * **metadata**: Processing metadata | ||
| 1010 | |||
| 1011 | **Minimum Viable Example:** | ||
| 1012 | |||
| 1013 | {{code language="json"}} | ||
| 1014 | { | ||
| 1015 | "article_id": "a1", | ||
| 1016 | "overall_assessment": { | ||
| 1017 | "credibility_score": 0.95, | ||
| 1018 | "risk_tier": "C", | ||
| 1019 | "summary": "All claims verified as true", | ||
| 1020 | "confidence": 0.98 | ||
| 1021 | }, | ||
| 1022 | "claim_aggregation": { | ||
| 1023 | "total_claims": 1, | ||
| 1024 | "verdict_distribution": {"TRUE": 1}, | ||
| 1025 | "avg_confidence": 0.99 | ||
| 1026 | }, | ||
| 1027 | "contextual_factors": [], | ||
| 1028 | "recommendations": { | ||
| 1029 | "publication_mode": "AI_GENERATED", | ||
| 1030 | "requires_review": false, | ||
| 1031 | "suggested_disclaimers": [] | ||
| 1032 | }, | ||
| 1033 | "metadata": {"holistic_timestamp": "2024-12-24T18:00:00Z"} | ||
| 1034 | } | ||
| 1035 | {{/code}} | ||
| 1036 | |||
| 1037 | === 3.2 Create Analysis Job (3-Stage) === | ||
| 1038 | |||
| 1039 | **Endpoint:** POST /v1/analyze | ||
| 1040 | |||
| 1041 | ==== Idempotency Support: ==== | ||
| 1042 | |||
| 1043 | To prevent duplicate job creation on network retries, clients SHOULD include: | ||
| 1044 | |||
| 1045 | {{{POST /v1/analyze | ||
| 1046 | Idempotency-Key: {client-generated-uuid} | ||
| 1047 | }}} | ||
| 1048 | |||
| 1049 | OR use the client.request_id field: | ||
| 1050 | |||
| 1051 | {{{{ | ||
| 1052 | "input_url": "...", | ||
| 1053 | "client": { | ||
| 1054 | "request_id": "client-uuid-12345", | ||
| 1055 | "source_label": "optional" | ||
| 1056 | } | ||
| 1057 | } | ||
| 1058 | }}} | ||
| 1059 | |||
| 1060 | **Server Behavior:** | ||
| 1061 | |||
| 1062 | * If Idempotency-Key or request_id seen before (within 24 hours): | ||
| 1063 | ** Return existing job (200 OK, not 202 Accepted) | ||
| 1064 | ** Do NOT create duplicate job or charge twice | ||
| 1065 | * Idempotency keys expire after 24 hours (matches job retention) | ||
| 1066 | |||
| 1067 | **Example Response (Idempotent):** | ||
| 1068 | |||
| 1069 | {{{{ | ||
| 1070 | "job_id": "01J...ULID", | ||
| 1071 | "status": "RUNNING", | ||
| 1072 | "idempotent": true, | ||
| 1073 | "original_request_at": "2025-12-24T10:31:00Z", | ||
| 1074 | "message": "Returning existing job (idempotency key matched)" | ||
| 1075 | } | ||
| 1076 | }}} | ||
| 1077 | |||
| 1078 | ==== Request Body: ==== | ||
| 1079 | |||
| 1080 | {{{{ | ||
| 1081 | "input_type": "url", | ||
| 1082 | "input_url": "https://example.com/medical-report-01", | ||
| 1083 | "input_text": null, | ||
| 1084 | "options": { | ||
| 1085 | "browsing": "on", | ||
| 1086 | "depth": "standard", | ||
| 1087 | "max_claims": 5, | ||
| 1088 | |||
| 1089 | * **cache_preference** (optional): Cache usage preference | ||
| 1090 | * **Type:** string | ||
| 1091 | * **Enum:** {{code}}["prefer_cache", "allow_partial", "skip_cache"]{{/code}} | ||
| 1092 | * **Default:** {{code}}"prefer_cache"{{/code}} | ||
| 1093 | * **Semantics:** | ||
| 1094 | * {{code}}"prefer_cache"{{/code}}: Use full cache if available, otherwise run all stages | ||
| 1095 | * {{code}}"allow_partial"{{/code}}: Use cached Stage 2 results if available, rerun only Stage 3 | ||
| 1096 | * {{code}}"skip_cache"{{/code}}: Always rerun all stages (ignore cache) | ||
| 1097 | * **Behavior:** When set to {{code}}"allow_partial"{{/code}} and Stage 2 cached results exist: | ||
| 1098 | * Stage 1 & 2 are skipped | ||
| 1099 | * Stage 3 (holistic assessment) runs fresh with cached claim analyses | ||
| 1100 | * Response includes {{code}}"cache_used": true{{/code}} and {{code}}"stages_cached": ["stage1", "stage2"]{{/code}} | ||
| 1101 | |||
| 1102 | "scenarios_per_claim": 2, | ||
| 1103 | "max_evidence_per_scenario": 6, | ||
| 1104 | "context_aware_analysis": true | ||
| 1105 | }, | ||
| 1106 | "client": { | ||
| 1107 | "request_id": "optional-client-tracking-id", | ||
| 1108 | "source_label": "optional" | ||
| 1109 | } | ||
| 1110 | } | ||
| 1111 | }}} | ||
| 1112 | |||
| 1113 | **Options:** | ||
| 1114 | |||
| 1115 | * browsing: on | off (retrieve web sources or just output queries) | ||
| 1116 | * depth: standard | deep (evidence thoroughness) | ||
| 1117 | * max_claims: 1-10 (default: **5** for cost control) | ||
| 1118 | * scenarios_per_claim: 1-5 (default: **2** for cost control) | ||
| 1119 | * max_evidence_per_scenario: 3-10 (default: **6**) | ||
| 1120 | * context_aware_analysis: true | false (experimental) | ||
| 1121 | |||
| 1122 | **Response:** 202 Accepted | ||
| 1123 | |||
| 1124 | {{{{ | ||
| 1125 | "job_id": "01J...ULID", | ||
| 1126 | "status": "QUEUED", | ||
| 1127 | "created_at": "2025-12-24T10:31:00Z", | ||
| 1128 | "estimated_cost": 0.114, | ||
| 1129 | "cost_breakdown": { | ||
| 1130 | "stage1_extraction": 0.003, | ||
| 1131 | "stage2_new_claims": 0.081, | ||
| 1132 | "stage2_cached_claims": 0.000, | ||
| 1133 | "stage3_holistic": 0.030 | ||
| 1134 | }, | ||
| 1135 | "cache_info": { | ||
| 1136 | "claims_to_extract": 5, | ||
| 1137 | "estimated_cache_hits": 4, | ||
| 1138 | "estimated_new_claims": 1 | ||
| 1139 | }, | ||
| 1140 | "links": { | ||
| 1141 | "self": "/v1/jobs/01J...ULID", | ||
| 1142 | "result": "/v1/jobs/01J...ULID/result", | ||
| 1143 | "report": "/v1/jobs/01J...ULID/report", | ||
| 1144 | "events": "/v1/jobs/01J...ULID/events" | ||
| 1145 | } | ||
| 1146 | } | ||
| 1147 | }}} | ||
| 1148 | |||
| 1149 | **Error Responses:** | ||
| 1150 | |||
| 1151 | 402 Payment Required - Free tier limit reached, cache-only mode | ||
| 1152 | |||
| 1153 | {{{{ | ||
| 1154 | "error": "credit_limit_reached", | ||
| 1155 | "message": "Monthly credit limit reached. Entering cache-only mode.", | ||
| 1156 | "cache_only_mode": true, | ||
| 1157 | "credit_remaining": 0.00, | ||
| 1158 | "reset_date": "2025-02-01T00:00:00Z", | ||
| 1159 | "action": "Resubmit with cache_preference=allow_partial for cached results" | ||
| 1160 | } | ||
| 1161 | }}} | ||
| 1162 | |||
| 1163 | ---- | ||
| 1164 | |||
| 1165 | == 4. Data Schemas == | ||
| 1166 | |||
| 1167 | === 4.1 Stage 1 Output: ClaimExtraction === | ||
| 1168 | |||
| 1169 | {{{{ | ||
| 1170 | "job_id": "01J...ULID", | ||
| 1171 | "stage": "stage1_extraction", | ||
| 1172 | "article_metadata": { | ||
| 1173 | "title": "Article title", | ||
| 1174 | "source_url": "https://example.com/article", | ||
| 1175 | "extracted_text_length": 5234, | ||
| 1176 | "language": "en" | ||
| 1177 | }, | ||
| 1178 | "claims": [ | ||
| 1179 | { | ||
| 1180 | "claim_id": "C1", | ||
| 1181 | "claim_text": "Original claim text from article", | ||
| 1182 | "canonical_claim": "Normalized, deduplicated phrasing", | ||
| 1183 | "claim_hash": "sha256:abc123...", | ||
| 1184 | "is_central_to_thesis": true, | ||
| 1185 | "claim_type": "causal", | ||
| 1186 | "evaluability": "evaluable", | ||
| 1187 | "risk_tier": "B", | ||
| 1188 | "domain": "public_health" | ||
| 1189 | } | ||
| 1190 | ], | ||
| 1191 | "article_thesis": "Main argument detected", | ||
| 1192 | "cost": 0.003 | ||
| 1193 | } | ||
| 1194 | }}} | ||
| 1195 | |||
| 1196 | ---- | ||
| 1197 | |||
| 1198 | === 4.5 Verdict Label Taxonomy === | ||
| 1199 | |||
| 1200 | FactHarbor uses **three distinct verdict taxonomies** depending on analysis level: | ||
| 1201 | |||
| 1202 | ==== 4.5.1 Scenario Verdict Labels (Stage 2) ==== | ||
| 1203 | |||
| 1204 | Used for individual scenario verdicts within a claim. | ||
| 1205 | |||
| 1206 | **Enum Values:** | ||
| 1207 | |||
| 1208 | * Highly Likely - Probability 0.85-1.0, high confidence | ||
| 1209 | * Likely - Probability 0.65-0.84, moderate-high confidence | ||
| 1210 | * Unclear - Probability 0.35-0.64, or low confidence | ||
| 1211 | * Unlikely - Probability 0.16-0.34, moderate-high confidence | ||
| 1212 | * Highly Unlikely - Probability 0.0-0.15, high confidence | ||
| 1213 | * Unsubstantiated - Insufficient evidence to determine probability | ||
| 1214 | |||
| 1215 | ==== 4.5.2 Claim Verdict Labels (Rollup) ==== | ||
| 1216 | |||
| 1217 | Used when summarizing a claim across all scenarios. | ||
| 1218 | |||
| 1219 | **Enum Values:** | ||
| 1220 | |||
| 1221 | * Supported - Majority of scenarios are Likely or Highly Likely | ||
| 1222 | * Refuted - Majority of scenarios are Unlikely or Highly Unlikely | ||
| 1223 | * Inconclusive - Mixed scenarios or majority Unclear/Unsubstantiated | ||
| 1224 | |||
| 1225 | **Mapping Logic:** | ||
| 1226 | |||
| 1227 | * If ≥60% scenarios are (Highly Likely | Likely) → Supported | ||
| 1228 | * If ≥60% scenarios are (Highly Unlikely | Unlikely) → Refuted | ||
| 1229 | * Otherwise → Inconclusive | ||
| 1230 | |||
| 1231 | ==== 4.5.3 Article Verdict Labels (Stage 3) ==== | ||
| 1232 | |||
| 1233 | Used for holistic article-level assessment. | ||
| 1234 | |||
| 1235 | **Enum Values:** | ||
| 1236 | |||
| 1237 | * WELL-SUPPORTED - Article thesis logically follows from supported claims | ||
| 1238 | * MISLEADING - Claims may be true but article commits logical fallacies | ||
| 1239 | * REFUTED - Central claims are refuted, invalidating thesis | ||
| 1240 | * UNCERTAIN - Insufficient evidence or highly mixed claim verdicts | ||
| 1241 | |||
| 1242 | **Note:** Article verdict considers **claim centrality** (central claims override supporting claims). | ||
| 1243 | |||
| 1244 | ==== 4.5.4 API Field Mapping ==== | ||
| 1245 | |||
| 1246 | |=Level|=API Field|=Enum Name | ||
| 1247 | |Scenario|scenarios[].verdict.label|scenario_verdict_label | ||
| 1248 | |Claim|claims[].rollup_verdict (optional)|claim_verdict_label | ||
| 1249 | |Article|article_holistic_assessment.overall_verdict|article_verdict_label | ||
| 1250 | |||
| 1251 | ---- | ||
| 1252 | |||
| 1253 | == 5. Cache Architecture == | ||
| 1254 | |||
| 1255 | === 5.1 Redis Cache Design === | ||
| 1256 | |||
| 1257 | **Technology:** Redis 7.0+ (in-memory key-value store) | ||
| 1258 | |||
| 1259 | **Cache Key Schema:** | ||
| 1260 | |||
| 1261 | {{{claim:v1norm1:{language}:{sha256(canonical_claim)} | ||
| 1262 | }}} | ||
| 1263 | |||
| 1264 | **Example:** | ||
| 1265 | |||
| 1266 | {{{Claim (English): "COVID vaccines are 95% effective" | ||
| 1267 | Canonical: "covid vaccines are 95 percent effective" | ||
| 1268 | Language: "en" | ||
| 1269 | SHA256: abc123...def456 | ||
| 1270 | Key: claim:v1norm1:en:abc123...def456 | ||
| 1271 | }}} | ||
| 1272 | |||
| 1273 | **Rationale:** Prevents cross-language collisions and enables per-language cache analytics. | ||
| 1274 | |||
| 1275 | **Data Structure:** | ||
| 1276 | |||
| 1277 | {{{SET claim:v1norm1:en:abc123...def456 '{...ClaimAnalysis JSON...}' | ||
| 1278 | EXPIRE claim:v1norm1:en:abc123...def456 7776000 # 90 days | ||
| 1279 | }}} | ||
| 1280 | |||
| 1281 | ---- | ||
| 1282 | |||
| 1283 | === 5.1.1 Canonical Claim Normalization (v1) === | ||
| 1284 | |||
| 1285 | The cache key depends on deterministic claim normalization. All implementations MUST follow this algorithm exactly. | ||
| 1286 | |||
| 1287 | **Algorithm: Canonical Claim Normalization v1** | ||
| 1288 | |||
| 1289 | |||
| 1290 | **Normative Algorithm:** | ||
| 1291 | |||
| 1292 | {{code language="python"}} | ||
| 1293 | def normalize_claim(text: str) -> str: | ||
| 1294 | """ | ||
| 1295 | Canonical claim normalization for deduplication. | ||
| 1296 | MUST follow this algorithm exactly. | ||
| 1297 | |||
| 1298 | Version: v1norm1 | ||
| 1299 | """ | ||
| 1300 | import re | ||
| 1301 | import unicodedata | ||
| 1302 | |||
| 1303 | # 1. Unicode normalization (NFD) | ||
| 1304 | text = unicodedata.normalize('NFD', text) | ||
| 1305 | |||
| 1306 | # 2. Lowercase | ||
| 1307 | text = text.lower() | ||
| 1308 | |||
| 1309 | # 3. Remove diacritics | ||
| 1310 | text = ''.join(c for c in text if unicodedata.category(c) != 'Mn') | ||
| 1311 | |||
| 1312 | # 4. Normalize whitespace | ||
| 1313 | text = re.sub(r'\s+', ' ', text) | ||
| 1314 | text = text.strip() | ||
| 1315 | |||
| 1316 | # 5. Remove punctuation except apostrophes in contractions | ||
| 1317 | text = re.sub(r"[^\w\s']", '', text) | ||
| 1318 | |||
| 1319 | # 6. Normalize common contractions | ||
| 1320 | contractions = { | ||
| 1321 | "don't": "do not", | ||
| 1322 | "doesn't": "does not", | ||
| 1323 | "didn't": "did not", | ||
| 1324 | "can't": "cannot", | ||
| 1325 | "won't": "will not", | ||
| 1326 | "shouldn't": "should not", | ||
| 1327 | "wouldn't": "would not", | ||
| 1328 | "isn't": "is not", | ||
| 1329 | "aren't": "are not", | ||
| 1330 | "wasn't": "was not", | ||
| 1331 | "weren't": "were not", | ||
| 1332 | "haven't": "have not", | ||
| 1333 | "hasn't": "has not", | ||
| 1334 | "hadn't": "had not" | ||
| 1335 | } | ||
| 1336 | |||
| 1337 | for contraction, expansion in contractions.items(): | ||
| 1338 | text = re.sub(r'\b' + contraction + r'\b', expansion, text) | ||
| 1339 | |||
| 1340 | # 7. Remove remaining apostrophes | ||
| 1341 | text = text.replace("'", "") | ||
| 1342 | |||
| 1343 | # 8. Final whitespace normalization | ||
| 1344 | text = re.sub(r'\s+', ' ', text) | ||
| 1345 | text = text.strip() | ||
| 1346 | |||
| 1347 | return text | ||
| 1348 | {{/code}} | ||
| 1349 | |||
| 1350 | **Normalization Examples:** | ||
| 1351 | |||
| 1352 | |= Input |= Normalized Output | ||
| 1353 | | "Biden won the 2020 election" | {{code}}biden won the 2020 election{{/code}} | ||
| 1354 | | "Biden won the 2020 election!" | {{code}}biden won the 2020 election{{/code}} | ||
| 1355 | | "Biden won the 2020 election" | {{code}}biden won the 2020 election{{/code}} | ||
| 1356 | | "Biden didn't win the 2020 election" | {{code}}biden did not win the 2020 election{{/code}} | ||
| 1357 | | "BIDEN WON THE 2020 ELECTION" | {{code}}biden won the 2020 election{{/code}} | ||
| 1358 | |||
| 1359 | **Versioning:** Algorithm version is {{code}}v1norm1{{/code}}. Changes to the algorithm require a new version identifier. | ||
| 1360 | |||
| 1361 | === 5.1.2 Copyright & Data Retention Policy === | ||
| 1362 | |||
| 1363 | **Evidence Excerpt Storage:** | ||
| 1364 | |||
| 1365 | To comply with copyright law and fair use principles: | ||
| 1366 | |||
| 1367 | **What We Store:** | ||
| 1368 | |||
| 1369 | * **Metadata only:** Title, author, publisher, URL, publication date | ||
| 1370 | * **Short excerpts:** Max 25 words per quote, max 3 quotes per evidence item | ||
| 1371 | * **Summaries:** AI-generated bullet points (not verbatim text) | ||
| 1372 | * **No full articles:** Never store complete article text beyond job processing | ||
| 1373 | |||
| 1374 | **Total per Cached Claim:** | ||
| 1375 | |||
| 1376 | * Scenarios: 2 per claim | ||
| 1377 | * Evidence items: 6 per scenario (12 total) | ||
| 1378 | * Quotes: 3 per evidence × 25 words = 75 words per item | ||
| 1379 | * **Maximum stored verbatim text:** ~~900 words per claim (12 × 75) | ||
| 1380 | |||
| 1381 | **Retention:** | ||
| 1382 | |||
| 1383 | * Cache TTL: 90 days | ||
| 1384 | * Job outputs: 24 hours (then archived or deleted) | ||
| 1385 | * No persistent full-text article storage | ||
| 1386 | |||
| 1387 | **Rationale:** | ||
| 1388 | |||
| 1389 | * Short excerpts for citation = fair use | ||
| 1390 | * Summaries are transformative (not copyrightable) | ||
| 1391 | * Limited retention (90 days max) | ||
| 1392 | * No commercial republication of excerpts | ||
| 1393 | |||
| 1394 | **DMCA Compliance:** | ||
| 1395 | |||
| 1396 | * Cache invalidation endpoint available for rights holders | ||
| 1397 | * Contact: dmca@factharbor.org | ||
| 1398 | |||
| 1399 | ---- | ||
| 1400 | |||
| 1401 | == Summary == | ||
| 1402 | |||
| 1403 | This WYSIWYG preview shows the **structure and key sections** of the 1,515-line API specification. | ||
| 1404 | |||
| 1405 | **Full specification includes:** | ||
| 1406 | |||
| 1407 | * Complete API endpoints (7 total) | ||
| 1408 | * All data schemas (ClaimExtraction, ClaimAnalysis, HolisticAssessment, Complete) | ||
| 1409 | * Quality gates & validation rules | ||
| 1410 | * LLM configuration for all 3 stages | ||
| 1411 | * Implementation notes with code samples | ||
| 1412 | * Testing strategy | ||
| 1413 | * Cross-references to other pages | ||
| 1414 | |||
| 1415 | **The complete specification is available in:** | ||
| 1416 | |||
| 1417 | * FactHarbor_POC1_API_and_Schemas_Spec_v0_4_1_PATCHED.md (45 KB standalone) | ||
| 1418 | * Export files (TEST/PRODUCTION) for xWiki import |