Wiki source code of Data Examples
Last modified by Robert Schaub on 2025/12/18 12:03
Show last authors
| author | version | line-number | content |
|---|---|---|---|
| 1 | = Data Examples = | ||
| 2 | The following examples illustrate complete, realistic FactHarbor data objects | ||
| 3 | across Claims, Scenarios, Evidence, ScenarioEvidenceLinks, Verdicts, and | ||
| 4 | Re-evaluation behavior. | ||
| 5 | Each field is annotated with: | ||
| 6 | * **[A]** — fully automatable | ||
| 7 | * **[M]** — AI-draft, human validation needed | ||
| 8 | * **[H]** — human-only | ||
| 9 | * **[F]** — federation metadata (optional) | ||
| 10 | These examples conform to: | ||
| 11 | * Data Model (Ch. 5) | ||
| 12 | * Workflows (Ch. 6) | ||
| 13 | * Requirements (Ch. 2) | ||
| 14 | * Architecture (Ch. 3) | ||
| 15 | * AKEL (Ch. 4) | ||
| 16 | = Example A — “Hydrogen cars are more energy efficient than EVs.” = | ||
| 17 | A clearly empirical, technical, domain-specific claim. | ||
| 18 | == 1. Claim (ClaimID: C_H2EV) == | ||
| 19 | (% style="width:100%" %) | ||
| 20 | |=Field|=Value|=Notes | ||
| 21 | |ClaimID|C_H2EV| | ||
| 22 | |VersionID|v1| | ||
| 23 | |Text|“Hydrogen cars are more energy efficient than battery electric vehicles (EVs).”|[H] | ||
| 24 | |Domain|energy_transport|[A] | ||
| 25 | |ClaimType|literal|[A] | ||
| 26 | |Evaluability|empirical|[A] | ||
| 27 | |RiskTier|medium|[A] | ||
| 28 | |ClusterID|CL_EnergyEff|[A] | ||
| 29 | |Status|active| | ||
| 30 | == 2. Scenario S_H2EV_01 — “Well-to-wheel efficiency, EU grid mix” == | ||
| 31 | (% style="width:100%" %) | ||
| 32 | |=Field|=Value | ||
| 33 | |ScenarioID|S_H2EV_01 | ||
| 34 | |VersionID|v1 | ||
| 35 | |ClaimID|C_H2EV | ||
| 36 | |Definitions|//“Well-to-wheel efficiency” = total chain efficiency.// [H] | ||
| 37 | |Assumptions|EU 2020–24 grid mix, electrolysis 69%, compression losses 10%, fuel cell 55%. [M] | ||
| 38 | |ContextBoundary|Europe, 2020–2024 technology|[H] | ||
| 39 | |EvaluationMethod|Comparative WTW energy analysis|[A] | ||
| 40 | |RiskTier|low | ||
| 41 | |Status|active| | ||
| 42 | == 3. Evidence == | ||
| 43 | === 3.1 Evidence E1 === | ||
| 44 | Peer-reviewed energy-systems paper. | ||
| 45 | (% style="width:100%" %) | ||
| 46 | |=Field|=Value | ||
| 47 | |EvidenceID|E_H2EV_Paper1 | ||
| 48 | |VersionID|v1 | ||
| 49 | |Type|scientific_paper | ||
| 50 | |Category|empirical | ||
| 51 | |Reliability|high | ||
| 52 | |Provenance|Journal publication + DOI | ||
| 53 | |ExtractionMethod|AKEL + human verification | ||
| 54 | |Status|verified| | ||
| 55 | === 3.2 Evidence E2 === | ||
| 56 | Official EU dataset. | ||
| 57 | (% style="width:100%" %) | ||
| 58 | |=Field|=Value | ||
| 59 | |EvidenceID|E_H2EV_Dataset | ||
| 60 | |VersionID|v1 | ||
| 61 | |Type|dataset | ||
| 62 | |Category|empirical | ||
| 63 | |Reliability|medium | ||
| 64 | |Provenance|EU Energy Stats 2023 | ||
| 65 | |ExtractionMethod|API import | ||
| 66 | |Status|verified| | ||
| 67 | == 4. ScenarioEvidenceLinks == | ||
| 68 | (% style="width:100%" %) | ||
| 69 | |=(% style="width:30%" %)Scenario|=(% style="width:40%" %)Evidence|=(% style="width:30%" %)RelevanceScore / Notes | ||
| 70 | |S_H2EV_01 v1|E_H2EV_Paper1 v1|0.92 [M] | ||
| 71 | |S_H2EV_01 v1|E_H2EV_Dataset v1|0.77 [M] | ||
| 72 | == 5. Verdict == | ||
| 73 | === 5.1 Verdict V_H2EV_01 v1 === | ||
| 74 | (% style="width:100%" %) | ||
| 75 | |=Field|=Value | ||
| 76 | |VerdictID|V_H2EV_01 | ||
| 77 | |VersionID|v1 | ||
| 78 | |ClaimID|C_H2EV | ||
| 79 | |ScenarioID|S_H2EV_01 | ||
| 80 | |EvidenceVersionSet|[E_H2EV_Paper1:v1, E_H2EV_Dataset:v1] | ||
| 81 | |LikelihoodRange|0.10–0.25| | ||
| 82 | |ExplanationSummary|EVs convert grid electricity to motion more efficiently than hydrogen fuel cell vehicles under EU assumptions.| | ||
| 83 | |ReasoningChain|Step-by-step efficiency-chain comparison| | ||
| 84 | |UncertaintyFactors|Variability in grid mix, future electrolysis improvements| | ||
| 85 | |Status|current| | ||
| 86 | == 6. Notes == | ||
| 87 | * Many fields automatable (claim classification, domain, initial scenario structure, metadata extraction). | ||
| 88 | * Definitions and boundaries require human reasoning. | ||
| 89 | = Example B — “Regular cold-water exposure (<14°C) for sufficient months improves health.” = | ||
| 90 | A complex lifestyle/health claim requiring careful scenario boundaries. | ||
| 91 | == 7. Claim (C_CW_Health) == | ||
| 92 | (% style="width:100%" %) | ||
| 93 | |=Field|=Value | ||
| 94 | |Text|“Regular cold-water exposure below 14°C for at least 6 months improves health.”| | ||
| 95 | |Domain|health_lifestyle| | ||
| 96 | |ClaimType|literal| | ||
| 97 | |Evaluability|empirical| | ||
| 98 | |RiskTier|high| | ||
| 99 | == 8. Scenario S_CW_01 — “Short daily immersions in healthy adults” == | ||
| 100 | (% style="width:100%" %) | ||
| 101 | |=Field|=Value | ||
| 102 | |ScenarioID|S_CW_01 | ||
| 103 | |VersionID|v1 | ||
| 104 | |Definitions|“Regular exposure” = 3–7×/week, 2–4 minutes| | ||
| 105 | |Assumptions|Healthy adults, no cardiovascular risk| | ||
| 106 | |ContextBoundary|6+ months, 8–14°C| | ||
| 107 | |EvaluationMethod|Health outcome comparison| | ||
| 108 | |RiskTier|high| | ||
| 109 | == 9. Evidence == | ||
| 110 | === 9.1 Evidence E1 — Dutch cold-shower RCT === | ||
| 111 | (% style="width:100%" %) | ||
| 112 | |=Field|=Value | ||
| 113 | |Type|scientific_paper| | ||
| 114 | |Category|empirical| | ||
| 115 | |Reliability|high| | ||
| 116 | |ExtractionMethod|AKEL + human validation| | ||
| 117 | === 9.2 Evidence E2 — Meta-analysis on immersion effects === | ||
| 118 | (% style="width:100%" %) | ||
| 119 | |=Field|=Value | ||
| 120 | |Category|empirical| | ||
| 121 | |Reliability|medium| | ||
| 122 | == 10. ScenarioEvidenceLinks == | ||
| 123 | (% style="width:100%" %) | ||
| 124 | |=Scenario|=Evidence|=Score | ||
| 125 | |S_CW_01|E1|0.82 | ||
| 126 | |S_CW_01|E2|0.75 | ||
| 127 | == 11. Verdict == | ||
| 128 | (% style="width:100%" %) | ||
| 129 | |=Field|=Value | ||
| 130 | |LikelihoodRange|0.40–0.65 (uncertain)| | ||
| 131 | |ExplanationSummary|Some benefits (mood, perceived recovery), but long-term health improvement unclear.| | ||
| 132 | |UncertaintyFactors|Small sample sizes, lifestyle confounds| | ||
| 133 | == 12. Notes == | ||
| 134 | * Medical ethics → high human involvement. | ||
| 135 | * AKEL helpful for metadata, summaries, and links. | ||
| 136 | = Example C — “Hillary Clinton communicates with Eleanor Roosevelt.” = | ||
| 137 | A belief/metaphorical/non-falsifiable claim. | ||
| 138 | == 13. Claim (C_HC_ER) == | ||
| 139 | (% style="width:100%" %) | ||
| 140 | |=Field|=Value | ||
| 141 | |Text|“Hillary Clinton communicates with Eleanor Roosevelt.”| | ||
| 142 | |Domain|politics_private_beliefs| | ||
| 143 | |ClaimType|metaphorical| | ||
| 144 | |Evaluability|non-falsifiable| | ||
| 145 | |RiskTier|low| | ||
| 146 | == 14. Scenario S_ER_01 — Literal paranormal interpretation == | ||
| 147 | (% style="width:100%" %) | ||
| 148 | |=Field|=Value | ||
| 149 | |Definitions|“Communicate” = literal paranormal communication [H]| | ||
| 150 | |Assumptions|Paranormal abilities exist [H]| | ||
| 151 | |EvaluationMethod|Not empirically testable| | ||
| 152 | |RiskTier|low| | ||
| 153 | |Evaluability|non-falsifiable| | ||
| 154 | == 15. Evidence == | ||
| 155 | Minimal placeholder: | ||
| 156 | (% style="width:100%" %) | ||
| 157 | |=Field|=Value | ||
| 158 | |EvidenceID|E_None| | ||
| 159 | |Type|none| | ||
| 160 | |Category|none| | ||
| 161 | |Reliability|low| | ||
| 162 | == 16. Verdict == | ||
| 163 | LikelihoodRange: **undefined** | ||
| 164 | Status: **non-evaluable** | ||
| 165 | Reasoning: claim is non-falsifiable. | ||
| 166 | = Example D — “Hillary Clinton is a witch.” = | ||
| 167 | Clearly rhetorical/metaphorical. | ||
| 168 | == 17. Claim (C_HC_Witch) == | ||
| 169 | (% style="width:100%" %) | ||
| 170 | |=Field|=Value | ||
| 171 | |Text|“Hillary Clinton is a witch.”| | ||
| 172 | |Domain|rhetoric| | ||
| 173 | |ClaimType|rhetorical| | ||
| 174 | |Evaluability|non-falsifiable| | ||
| 175 | |RiskTier|low| | ||
| 176 | == 18. Scenario S_Witch_01 — Literal interpretation == | ||
| 177 | (% style="width:100%" %) | ||
| 178 | |=Field|=Value | ||
| 179 | |Definitions|Supernatural definition of “witch”| | ||
| 180 | |Assumptions|Supernatural powers exist| | ||
| 181 | |EvaluationMethod|Non-testable| | ||
| 182 | |Evaluability|non-falsifiable| | ||
| 183 | == 19. Evidence == | ||
| 184 | None required. | ||
| 185 | == 20. Verdict == | ||
| 186 | Likelihood: **undefined** | ||
| 187 | Reasoning: rhetorical, not empirical. | ||
| 188 | = Automation Summary Across Examples = | ||
| 189 | == 21. Fully Automatable [A] == | ||
| 190 | * Claim normalization | ||
| 191 | * Claim clustering | ||
| 192 | * Evidence metadata extraction | ||
| 193 | * Initial scenario scaffolding | ||
| 194 | * Reliability heuristics | ||
| 195 | * Relevance ranking | ||
| 196 | * Draft verdicts | ||
| 197 | * Trigger detection | ||
| 198 | == 22. Mixed [M] == | ||
| 199 | * Assumptions | ||
| 200 | * Context boundaries | ||
| 201 | * Relevance scoring | ||
| 202 | * Reasoning chain | ||
| 203 | * Uncertainty factors | ||
| 204 | == 23. Human-only [H] == | ||
| 205 | * Definitions | ||
| 206 | * Ethical constraints | ||
| 207 | * High-risk scenario approval | ||
| 208 | * Interpretation of meaning | ||
| 209 | * Final verdict approval |