Changes for page Automation
Last modified by Robert Schaub on 2025/12/22 13:50
To version 1.2
edited by Robert Schaub
on 2025/12/22 13:49
on 2025/12/22 13:49
Change comment:
Update document after refactoring.
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,31 +1,21 @@ 1 1 = Automation = 2 - 3 3 **How FactHarbor scales through automated claim evaluation.** 4 - 5 5 == 1. Automation Philosophy == 6 - 7 7 FactHarbor is **automation-first**: AKEL (AI Knowledge Extraction Layer) makes all content decisions. Humans monitor system performance and improve algorithms. 8 8 **Why automation:** 9 - 10 10 * **Scale**: Can process millions of claims 11 11 * **Consistency**: Same evaluation criteria applied uniformly 12 12 * **Transparency**: Algorithms are auditable 13 13 * **Speed**: Results in <20 seconds typically 14 14 See [[Automation Philosophy>>Test.FactHarbor.Organisation.Automation-Philosophy]] for detailed principles. 15 - 16 16 == 2. Claim Processing Flow == 17 - 18 18 === 2.1 User Submits Claim === 19 - 20 20 * User provides claim text + source URLs 21 21 * System validates format 22 22 * Assigns processing ID 23 23 * Queues for AKEL processing 24 - 25 25 === 2.2 AKEL Processing === 26 - 27 27 **AKEL automatically:** 28 - 29 29 1. Parses claim into testable components 30 30 2. Extracts evidence from sources 31 31 3. Scores source credibility ... ... @@ -35,12 +35,9 @@ 35 35 7. Publishes result 36 36 **Processing time**: Typically <20 seconds 37 37 **No human approval required** - publication is automatic 38 - 39 39 === 2.3 Publication States === 40 - 41 41 **Processing**: AKEL working on claim (not visible to public) 42 42 **Published**: AKEL completed evaluation (public) 43 - 44 44 * Verdict displayed with confidence score 45 45 * Evidence and sources shown 46 46 * Risk tier indicated ... ... @@ -58,19 +58,16 @@ 58 58 === POC: Two-Phase Approach === 59 59 60 60 **Phase 1: Claim Extraction** 61 - 62 62 * Single LLM call to extract all claims from submitted content 63 63 * Light structure, focused on identifying distinct verifiable claims 64 64 * Output: List of claims with context 65 65 66 66 **Phase 2: Claim Analysis (Parallel)** 67 - 68 68 * Single LLM call per claim (parallelizable) 69 69 * Full structured output: Evidence, Scenarios, Sources, Verdict, Risk 70 70 * Each claim analyzed independently 71 71 72 72 **Advantages:** 73 - 74 74 * Fast to implement (2-4 weeks to working POC) 75 75 * Only 2-3 API calls total (1 + N claims) 76 76 * Simple to debug (claim-level isolation) ... ... @@ -79,30 +79,26 @@ 79 79 === Production: Three-Phase Approach === 80 80 81 81 **Phase 1: Claim Extraction + Validation** 82 - 83 83 * Extract distinct verifiable claims 84 84 * Validate claim clarity and uniqueness 85 85 * Remove duplicates and vague claims 86 86 87 87 **Phase 2: Evidence Gathering (Parallel)** 88 - 89 89 * For each claim independently: 90 -* Find supporting and contradicting evidence 91 -* Identify authoritative sources 92 -* Generate test scenarios 72 + * Find supporting and contradicting evidence 73 + * Identify authoritative sources 74 + * Generate test scenarios 93 93 * Validation: Check evidence quality and source validity 94 94 * Error containment: Issues in one claim don't affect others 95 95 96 96 **Phase 3: Verdict Generation (Parallel)** 97 - 98 98 * For each claim: 99 -* Generate verdict based on validated evidence 100 -* Assess confidence and risk level 101 -* Flag low-confidence results for human review 80 + * Generate verdict based on validated evidence 81 + * Assess confidence and risk level 82 + * Flag low-confidence results for human review 102 102 * Validation: Check verdict consistency with evidence 103 103 104 104 **Advantages:** 105 - 106 106 * Error containment between phases 107 107 * Clear quality gates and validation 108 108 * Observable metrics per phase ... ... @@ -112,7 +112,6 @@ 112 112 === LLM Task Delegation === 113 113 114 114 All complex cognitive tasks are delegated to LLMs: 115 - 116 116 * **Claim Extraction**: Understanding context, identifying distinct claims 117 117 * **Evidence Finding**: Analyzing sources, assessing relevance 118 118 * **Scenario Generation**: Creating testable hypotheses ... ... @@ -123,7 +123,6 @@ 123 123 === Error Mitigation === 124 124 125 125 Research shows sequential LLM calls face compound error risks. FactHarbor mitigates this through: 126 - 127 127 * **Validation gates** between phases 128 128 * **Confidence thresholds** for quality control 129 129 * **Parallel processing** to avoid error propagation across claims ... ... @@ -130,48 +130,36 @@ 130 130 * **Human review queue** for low-confidence verdicts 131 131 * **Independent claim processing** - errors in one claim don't cascade to others 132 132 133 -== 3. Risk Tiers == 134 134 112 +== 3. Risk Tiers == 135 135 Risk tiers classify claims by potential impact and guide audit sampling rates. 136 - 137 137 === 3.1 Tier A (High Risk) === 138 - 139 139 **Domains**: Medical, legal, elections, safety, security 140 140 **Characteristics**: 141 - 142 142 * High potential for harm if incorrect 143 143 * Complex specialized knowledge required 144 144 * Often subject to regulation 145 145 **Publication**: AKEL publishes automatically with prominent risk warning 146 146 **Audit rate**: Higher sampling recommended 147 - 148 148 === 3.2 Tier B (Medium Risk) === 149 - 150 150 **Domains**: Complex policy, science, causality claims 151 151 **Characteristics**: 152 - 153 153 * Moderate potential impact 154 154 * Requires careful evidence evaluation 155 155 * Multiple valid interpretations possible 156 156 **Publication**: AKEL publishes automatically with standard risk label 157 157 **Audit rate**: Moderate sampling recommended 158 - 159 159 === 3.3 Tier C (Low Risk) === 160 - 161 161 **Domains**: Definitions, established facts, historical data 162 162 **Characteristics**: 163 - 164 164 * Low potential for harm 165 165 * Well-documented information 166 166 * Clear right/wrong answers typically 167 167 **Publication**: AKEL publishes by default 168 168 **Audit rate**: Lower sampling recommended 169 - 170 170 == 4. Quality Gates == 171 - 172 172 AKEL applies quality gates before publication. If any fail, claim is **flagged** (not blocked - still published). 173 173 **Quality gates**: 174 - 175 175 * Sufficient evidence extracted (≥2 sources) 176 176 * Sources meet minimum credibility threshold 177 177 * Confidence score calculable ... ... @@ -178,10 +178,8 @@ 178 178 * No detected manipulation patterns 179 179 * Claim parseable into testable form 180 180 **Failed gates**: Claim published with flag for moderator review 181 - 182 182 == 5. Automation Levels == 183 - 184 -{{include reference="Test.FactHarbor pre10 V0\.9\.70.Specification.Diagrams.Automation Level.WebHome"/}} 148 +{{include reference="Test.FactHarbor.Specification.Diagrams.Automation Level.WebHome"/}} 185 185 FactHarbor progresses through automation maturity levels: 186 186 **Release 0.5** (Proof-of-Concept): Tier C only, human review required 187 187 **Release 1.0** (Initial): Tier B/C auto-published, Tier A flagged for review ... ... @@ -193,7 +193,6 @@ 193 193 {{include reference="Test.FactHarbor.Specification.Diagrams.Automation Roadmap.WebHome"/}} 194 194 195 195 == 6. Human Role == 196 - 197 197 Humans do NOT review content for approval. Instead: 198 198 **Monitoring**: Watch aggregate performance metrics 199 199 **Improvement**: Fix algorithms when patterns show issues ... ... @@ -206,7 +206,6 @@ 206 206 {{include reference="Test.FactHarbor.Specification.Diagrams.Manual vs Automated matrix.WebHome"/}} 207 207 208 208 == 7. Moderation == 209 - 210 210 Moderators handle items AKEL flags: 211 211 **Abuse detection**: Spam, manipulation, harassment 212 212 **Safety issues**: Content that could cause immediate harm ... ... @@ -214,9 +214,7 @@ 214 214 **Action**: May temporarily hide content, ban users, or propose algorithm improvements 215 215 **Does NOT**: Routinely review claims or override verdicts 216 216 See [[Organisational Model>>Test.FactHarbor.Organisation.Organisational-Model]] for moderator role details. 217 - 218 218 == 8. Continuous Improvement == 219 - 220 220 **Performance monitoring**: Track AKEL accuracy, speed, coverage 221 221 **Issue identification**: Find systematic errors from metrics 222 222 **Algorithm updates**: Deploy improvements to fix patterns ... ... @@ -223,21 +223,15 @@ 223 223 **A/B testing**: Validate changes before full rollout 224 224 **Retrospectives**: Learn from failures systematically 225 225 See [[Continuous Improvement>>Test.FactHarbor.Organisation.How-We-Work-Together.Continuous-Improvement]] for improvement cycle. 226 - 227 227 == 9. Scalability == 228 - 229 229 Automation enables FactHarbor to scale: 230 - 231 231 * **Millions of claims** processable 232 232 * **Consistent quality** at any volume 233 233 * **Cost efficiency** through automation 234 234 * **Rapid iteration** on algorithms 235 235 Without automation: Human review doesn't scale, creates bottlenecks, introduces inconsistency. 236 - 237 237 == 10. Transparency == 238 - 239 239 All automation is transparent: 240 - 241 241 * **Algorithm parameters** documented 242 242 * **Evaluation criteria** public 243 243 * **Source scoring rules** explicit