Wiki source code of Data Model

Version 1.6 by Robert Schaub on 2025/12/24 11:48

Show last authors
1 = Data Model =
2
3 FactHarbor's data model is **simple, focused, designed for automated processing**.
4
5 == 1. Core Entities ==
6
7 === 1.1 Claim ===
8
9 Fields: id, assertion, domain, **status** (Published/Hidden only), **confidence_score**, **risk_score**, completeness_score, version, views, edit_count
10
11 ==== Performance Optimization: Denormalized Fields ====
12
13 **Rationale**: Claims system is 95% reads, 5% writes. Denormalizing common data reduces joins and improves query performance by 70%.
14 **Additional cached fields in claims table**:
15
16 * **evidence_summary** (JSONB): Top 5 most relevant evidence snippets with scores
17 * Avoids joining evidence table for listing/preview
18 * Updated when evidence is added/removed
19 * Format: `[{"text": "...", "source": "...", "relevance": 0.95}, ...]`
20 * **source_names** (TEXT[]): Array of source names for quick display
21 * Avoids joining through evidence to sources
22 * Updated when sources change
23 * Format: `["New York Times", "Nature Journal", ...]`
24 * **scenario_count** (INTEGER): Number of scenarios for this claim
25 * Quick metric without counting rows
26 * Updated when scenarios added/removed
27 * **cache_updated_at** (TIMESTAMP): When denormalized data was last refreshed
28 * Helps invalidate stale caches
29 * Triggers background refresh if too old
30 **Update Strategy**:
31 * **Immediate**: Update on claim edit (user-facing)
32 * **Deferred**: Update via background job every hour (non-critical)
33 * **Invalidation**: Clear cache when source data changes significantly
34 **Trade-offs**:
35 * ✅ 70% fewer joins on common queries
36 * ✅ Much faster claim list/search pages
37 * ✅ Better user experience
38 * ⚠️ Small storage increase (10%)
39 * ⚠️ Need to keep caches in sync
40
41 === 1.2 Evidence ===
42
43 Fields: claim_id, source_id, excerpt, url, relevance_score, supports
44
45 === 1.3 Source ===
46
47 **Purpose**: Track reliability of information sources over time
48 **Fields**:
49
50 * **id** (UUID): Unique identifier
51 * **name** (text): Source name (e.g., "New York Times", "Nature Journal")
52 * **domain** (text): Website domain (e.g., "nytimes.com")
53 * **type** (enum): NewsOutlet, AcademicJournal, GovernmentAgency, etc.
54 * **track_record_score** (0-100): Overall reliability score
55 * **accuracy_history** (JSON): Historical accuracy data
56 * **correction_frequency** (float): How often source publishes corrections
57 * **last_updated** (timestamp): When track record last recalculated
58 **How It Works**:
59 * Initial score based on source type (70 for academic journals, 30 for unknown)
60 * Updated daily by background scheduler
61 * Formula: accuracy_rate (50%) + correction_policy (20%) + editorial_standards (15%) + bias_transparency (10%) + longevity (5%)
62 * Track Record Check in AKEL pipeline: Adjusts evidence confidence based on source quality
63 * Quality thresholds: 90+=Exceptional, 70-89=Reliable, 50-69=Acceptable, 30-49=Questionable, <30=Unreliable
64 **See**: SOURCE Track Record System documentation for complete details on calculation, updates, and usage
65 Fields: id, name, domain, **track_record_score**, **accuracy_history**, **correction_frequency**
66 **Key**: Automated source reliability tracking
67
68 ==== Source Scoring Process (Separation of Concerns) ====
69
70 **Critical design principle**: Prevent circular dependencies between source scoring and claim analysis.
71 **The Problem**:
72
73 * Source scores should influence claim verdicts
74 * Claim verdicts should update source scores
75 * But: Direct feedback creates circular dependency and potential feedback loops
76 **The Solution**: Temporal separation
77
78 ==== Weekly Background Job (Source Scoring) ====
79
80 Runs independently of claim analysis:
81 {{code language="python"}}def update_source_scores_weekly():
82 """
83 Background job: Calculate source reliability
84 Never triggered by individual claim analysis
85 """
86 # Analyze all claims from past week
87 claims = get_claims_from_past_week()
88 for source in get_all_sources():
89 # Calculate accuracy metrics
90 correct_verdicts = count_correct_verdicts_citing(source, claims)
91 total_citations = count_total_citations(source, claims)
92 accuracy = correct_verdicts / total_citations if total_citations > 0 else 0.5
93 # Weight by claim importance
94 weighted_score = calculate_weighted_score(source, claims)
95 # Update source record
96 source.track_record_score = weighted_score
97 source.total_citations = total_citations
98 source.last_updated = now()
99 source.save()
100 # Job runs: Sunday 2 AM UTC
101 # Never during claim processing{{/code}}
102
103 ==== Real-Time Claim Analysis (AKEL) ====
104
105 Uses source scores but never updates them:
106 {{code language="python"}}def analyze_claim(claim_text):
107 """
108 Real-time: Analyze claim using current source scores
109 READ source scores, never UPDATE them
110 """
111 # Gather evidence
112 evidence_list = gather_evidence(claim_text)
113 for evidence in evidence_list:
114 # READ source score (snapshot from last weekly update)
115 source = get_source(evidence.source_id)
116 source_score = source.track_record_score
117 # Use score to weight evidence
118 evidence.weighted_relevance = evidence.relevance * source_score
119 # Generate verdict using weighted evidence
120 verdict = synthesize_verdict(evidence_list)
121 # NEVER update source scores here
122 # That happens in weekly background job
123 return verdict{{/code}}
124
125 ==== Monthly Audit (Quality Assurance) ====
126
127 Moderator review of flagged source scores:
128
129 * Verify scores make sense
130 * Detect gaming attempts
131 * Identify systematic biases
132 * Manual adjustments if needed
133 **Key Principles**:
134 ✅ **Scoring and analysis are temporally separated**
135 * Source scoring: Weekly batch job
136 * Claim analysis: Real-time processing
137 * Never update scores during analysis
138 ✅ **One-way data flow during processing**
139 * Claims READ source scores
140 * Claims NEVER WRITE source scores
141 * Updates happen in background only
142 ✅ **Predictable update cycle**
143 * Sources update every Sunday 2 AM
144 * Claims always use last week's scores
145 * No mid-week score changes
146 ✅ **Audit trail**
147 * Log all score changes
148 * Track score history
149 * Explainable calculations
150 **Benefits**:
151 * No circular dependencies
152 * Predictable behavior
153 * Easier to reason about
154 * Simpler testing
155 * Clear audit trail
156 **Example Timeline**:
157 ```
158 Sunday 2 AM: Calculate source scores for past week
159 → NYT score: 0.87 (up from 0.85)
160 → Blog X score: 0.52 (down from 0.61)
161 Monday-Saturday: Claims processed using these scores
162 → All claims this week use NYT=0.87
163 → All claims this week use Blog X=0.52
164 Next Sunday 2 AM: Recalculate scores including this week's claims
165 → NYT score: 0.89 (trending up)
166 → Blog X score: 0.48 (trending down)
167 ```
168
169 === 1.4 Scenario ===
170
171 **Purpose**: Different interpretations or contexts for evaluating claims
172 **Key Concept**: Scenarios are extracted from evidence, not generated arbitrarily. Each scenario represents a specific context, assumption set, or condition under which a claim should be evaluated.
173 **Relationship**: One-to-many with Claims (**simplified for V1.0**: scenario belongs to single claim)
174 **Fields**:
175
176 * **id** (UUID): Unique identifier
177 * **claim_id** (UUID): Foreign key to claim (one-to-many)
178 * **description** (text): Human-readable description of the scenario
179 * **assumptions** (JSONB): Key assumptions that define this scenario context
180 * **extracted_from** (UUID): Reference to evidence that this scenario was extracted from
181 * **created_at** (timestamp): When scenario was created
182 * **updated_at** (timestamp): Last modification
183 **How Found**: Evidence search → Extract context → Create scenario → Link to claim
184 **Example**:
185 For claim "Vaccines reduce hospitalization":
186 * Scenario 1: "Clinical trials (healthy adults 18-65, original strain)" from trial paper
187 * Scenario 2: "Real-world data (diverse population, Omicron variant)" from hospital data
188 * Scenario 3: "Immunocompromised patients" from specialist study
189 **V2.0 Evolution**: Many-to-many relationship can be added if users request cross-claim scenario sharing. For V1.0, keeping scenarios tied to single claims simplifies queries and reduces complexity without limiting functionality.
190
191 === 1.5 Verdict ===
192
193 **Purpose**: Assessment of a claim within a specific scenario context. Each verdict provides a conclusion about whether the claim is supported, refuted, or uncertain given the scenario's assumptions and available evidence.
194
195 **Core Fields**:
196
197 * **id** (UUID): Primary key
198 * **scenario_id** (UUID FK): The scenario being assessed
199 * **likelihood_range** (text): Probabilistic assessment (e.g., "0.40-0.65 (uncertain)", "0.75-0.85 (likely true)")
200 * **confidence** (decimal 0-1): How confident we are in this assessment
201 * **explanation_summary** (text): Human-readable reasoning explaining the verdict
202 * **uncertainty_factors** (text array): Specific factors limiting confidence (e.g., "Small sample sizes", "Lifestyle confounds", "Long-term effects unknown")
203 * **created_at** (timestamp): When verdict was created
204 * **updated_at** (timestamp): Last modification
205
206 **Change Tracking**: Like all entities, verdict changes are tracked through the Edit entity (section 1.7), not through separate version tables. Each edit records before/after states.
207
208 **Relationship**: Each Scenario has one Verdict. When understanding evolves, the verdict is updated and the change is logged in the Edit entity.
209
210 **Example**:
211 For claim "Exercise improves mental health" in scenario "Clinical trials (healthy adults, structured programs)":
212
213 * Initial state: likelihood_range="0.40-0.65 (uncertain)", uncertainty_factors=["Small sample sizes", "Short-term studies only"]
214 * After new evidence: likelihood_range="0.70-0.85 (likely true)", uncertainty_factors=["Lifestyle confounds remain"]
215 * Edit entity records the complete before/after change with timestamp and reason
216
217 **Key Design**: Verdicts are mutable entities tracked through the centralized Edit entity, consistent with Claims, Evidence, and Scenarios.
218
219 === 1.6 User ===
220
221 Fields: username, email, **role** (Reader/Contributor/Moderator), **reputation**, contributions_count
222
223 === User Reputation System ===
224
225 **V1.0 Approach**: Simple manual role assignment
226 **Rationale**: Complex reputation systems aren't needed until 100+ active contributors demonstrate the need for automated reputation management. Start simple, add complexity when metrics prove necessary.
227
228 === Roles (Manual Assignment) ===
229
230 **reader** (default):
231
232 * View published claims and evidence
233 * Browse and search content
234 * No editing permissions
235 **contributor**:
236 * Submit new claims
237 * Suggest edits to existing content
238 * Add evidence
239 * Requires manual promotion by moderator/admin
240 **moderator**:
241 * Approve/reject contributor suggestions
242 * Flag inappropriate content
243 * Handle abuse reports
244 * Assigned by admins based on trust
245 **admin**:
246 * Manage users and roles
247 * System configuration
248 * Access to all features
249 * Founder-appointed initially
250
251 === Contribution Tracking (Simple) ===
252
253 **Basic metrics only**:
254
255 * `contributions_count`: Total number of contributions
256 * `created_at`: Account age
257 * `last_active`: Recent activity
258 **No complex calculations**:
259 * No point systems
260 * No automated privilege escalation
261 * No reputation decay
262 * No threshold-based promotions
263
264 === Promotion Process ===
265
266 **Manual review by moderators/admins**:
267
268 1. User demonstrates value through contributions
269 2. Moderator reviews user's contribution history
270 3. Moderator promotes user to contributor role
271 4. Admin promotes trusted contributors to moderator
272 **Criteria** (guidelines, not automated):
273
274 * Quality of contributions
275 * Consistency over time
276 * Collaborative behavior
277 * Understanding of project goals
278
279 === V2.0+ Evolution ===
280
281 **Add complex reputation when**:
282
283 * 100+ active contributors
284 * Manual role management becomes bottleneck
285 * Clear patterns of abuse emerge requiring automation
286 **Future features may include**:
287 * Automated point calculations
288 * Threshold-based promotions
289 * Reputation decay for inactive users
290 * Track record scoring for contributors
291 See [[When to Add Complexity>>Test.FactHarbor.Specification.When-to-Add-Complexity]] for triggers.
292
293 === 1.7 Edit ===
294
295 **Fields**: entity_type, entity_id, user_id, before_state (JSON), after_state (JSON), edit_type, reason, created_at
296 **Purpose**: Complete audit trail for all content changes
297
298 === Edit History Details ===
299
300 **What Gets Edited**:
301
302 * **Claims** (20% edited): assertion, domain, status, scores, analysis
303 * **Evidence** (10% edited): excerpt, relevance_score, supports
304 * **Scenarios** (5% edited): description, assumptions, confidence
305 * **Sources**: NOT versioned (continuous updates, not editorial decisions)
306 **Who Edits**:
307 * **Contributors** (rep sufficient): Corrections, additions
308 * **Trusted Contributors** (rep sufficient): Major improvements, approvals
309 * **Moderators**: Abuse handling, dispute resolution
310 * **System (AKEL)**: Re-analysis, automated improvements (user_id = NULL)
311 **Edit Types**:
312 * `CONTENT_CORRECTION`: User fixes factual error
313 * `CLARIFICATION`: Improved wording
314 * `SYSTEM_REANALYSIS`: AKEL re-processed claim
315 * `MODERATION_ACTION`: Hide/unhide for abuse
316 * `REVERT`: Rollback to previous version
317 **Retention Policy** (5 years total):
318
319 1. **Hot storage** (3 months): PostgreSQL, instant access
320 2. **Warm storage** (2 years): Partitioned, slower queries
321 3. **Cold storage** (3 years): S3 compressed, download required
322 4. **Deletion**: After 5 years (except legal holds)
323 **Storage per 1M claims**: 400 MB (20% edited × 2 KB per edit)
324 **Use Cases**:
325
326 * View claim history timeline
327 * Detect vandalism patterns
328 * Learn from user corrections (system improvement)
329 * Legal compliance (audit trail)
330 * Rollback capability
331 See **Edit History Documentation** for complete details on what gets edited by whom, retention policy, and use cases
332
333 === 1.8 Flag ===
334
335 Fields: entity_id, reported_by, issue_type, status, resolution_note
336
337 === 1.9 QualityMetric ===
338
339 **Fields**: metric_type, category, value, target, timestamp
340 **Purpose**: Time-series quality tracking
341 **Usage**:
342
343 * **Continuous monitoring**: Hourly calculation of error rates, confidence scores, processing times
344 * **Quality dashboard**: Real-time display with trend charts
345 * **Alerting**: Automatic alerts when metrics exceed thresholds
346 * **A/B testing**: Compare control vs treatment metrics
347 * **Improvement validation**: Measure before/after changes
348 **Example**: `{type: "ErrorRate", category: "Politics", value: 0.12, target: 0.10, timestamp: "2025-12-17"}`
349
350 === 1.10 ErrorPattern ===
351
352 **Fields**: error_category, claim_id, description, root_cause, frequency, status
353 **Purpose**: Capture errors to trigger system improvements
354 **Usage**:
355
356 * **Error capture**: When users flag issues or system detects problems
357 * **Pattern analysis**: Weekly grouping by category and frequency
358 * **Improvement workflow**: Analyze → Fix → Test → Deploy → Re-process → Monitor
359 * **Metrics**: Track error rate reduction over time
360 **Example**: `{category: "WrongSource", description: "Unreliable tabloid cited", root_cause: "No quality check", frequency: 23, status: "Fixed"}`
361
362 == 1.4 Core Data Model ERD ==
363
364 {{include reference="Test.FactHarbor V0\.9\.100.Specification.Diagrams.Core Data Model ERD.WebHome"/}}
365
366 == 1.5 User Class Diagram ==
367
368 {{include reference="Test.FactHarbor V0\.9\.100.Specification.Diagrams.User Class Diagram.WebHome"/}}
369
370 == 2. Versioning Strategy ==
371
372 **All Content Entities Are Versioned**:
373
374 * **Claim**: Every edit creates new version (V1→V2→V3...)
375 * **Evidence**: Changes tracked in edit history
376 * **Scenario**: Modifications versioned
377 **How Versioning Works**:
378 * Entity table stores **current state only**
379 * Edit table stores **all historical states** (before_state, after_state as JSON)
380 * Version number increments with each edit
381 * Complete audit trail maintained forever
382 **Unversioned Entities** (current state only, no history):
383 * **Source**: Track record continuously updated (not versioned history, just current score)
384 * **User**: Account state (reputation accumulated, not versioned)
385 * **QualityMetric**: Time-series data (each record is a point in time, not a version)
386 * **ErrorPattern**: System improvement queue (status tracked, not versioned)
387 **Example**:
388 ```
389 Claim V1: "The sky is blue"
390 → User edits →
391 Claim V2: "The sky is blue during daytime"
392 → EDIT table stores: {before: "The sky is blue", after: "The sky is blue during daytime"}
393 ```
394
395 == 2.5. Storage vs Computation Strategy ==
396
397 **Critical architectural decision**: What to persist in databases vs compute dynamically?
398 **Trade-off**:
399
400 * **Store more**: Better reproducibility, faster, lower LLM costs | Higher storage/maintenance costs
401 * **Compute more**: Lower storage/maintenance costs | Slower, higher LLM costs, less reproducible
402
403 === Recommendation: Hybrid Approach ===
404
405 **STORE (in PostgreSQL):**
406
407 ==== Claims (Current State + History) ====
408
409 * **What**: assertion, domain, status, created_at, updated_at, version
410 * **Why**: Core entity, must be persistent
411 * **Also store**: confidence_score (computed once, then cached)
412 * **Size**: 1 KB per claim
413 * **Growth**: Linear with claims
414 * **Decision**: ✅ STORE - Essential
415
416 ==== Evidence (All Records) ====
417
418 * **What**: claim_id, source_id, excerpt, url, relevance_score, supports, extracted_at
419 * **Why**: Hard to re-gather, user contributions, reproducibility
420 * **Size**: 2 KB per evidence (with excerpt)
421 * **Growth**: 3-10 evidence per claim
422 * **Decision**: ✅ STORE - Essential for reproducibility
423
424 ==== Sources (Track Records) ====
425
426 * **What**: name, domain, track_record_score, accuracy_history, correction_frequency
427 * **Why**: Continuously updated, expensive to recompute
428 * **Size**: 500 bytes per source
429 * **Growth**: Slow (limited number of sources)
430 * **Decision**: ✅ STORE - Essential for quality
431
432 ==== Edit History (All Versions) ====
433
434 * **What**: before_state, after_state, user_id, reason, timestamp
435 * **Why**: Audit trail, legal requirement, reproducibility
436 * **Size**: 2 KB per edit
437 * **Growth**: Linear with edits (A portion of claims get edited)
438 * **Retention**: Hot storage 3 months → Warm storage 2 years → Archive to S3 3 years → Delete after 5 years total
439 * **Decision**: ✅ STORE - Essential for accountability
440
441 ==== Flags (User Reports) ====
442
443 * **What**: entity_id, reported_by, issue_type, description, status
444 * **Why**: Error detection, system improvement triggers
445 * **Size**: 500 bytes per flag
446 * **Growth**: 5-high percentage of claims get flagged
447 * **Decision**: ✅ STORE - Essential for improvement
448
449 ==== ErrorPatterns (System Improvement) ====
450
451 * **What**: error_category, claim_id, description, root_cause, frequency, status
452 * **Why**: Learning loop, prevent recurring errors
453 * **Size**: 1 KB per pattern
454 * **Growth**: Slow (limited patterns, many fixed)
455 * **Decision**: ✅ STORE - Essential for learning
456
457 ==== QualityMetrics (Time Series) ====
458
459 * **What**: metric_type, category, value, target, timestamp
460 * **Why**: Trend analysis, cannot recreate historical metrics
461 * **Size**: 200 bytes per metric
462 * **Growth**: Hourly = 8,760 per year per metric type
463 * **Retention**: 2 years hot, then aggregate and archive
464 * **Decision**: ✅ STORE - Essential for monitoring
465 **STORE (Computed Once, Then Cached):**
466
467 ==== Analysis Summary ====
468
469 * **What**: Neutral text summary of claim analysis (200-500 words)
470 * **Computed**: Once by AKEL when claim first analyzed
471 * **Stored in**: Claim table (text field)
472 * **Recomputed**: Only when system significantly improves OR claim edited
473 * **Why store**: Expensive to regenerate ($0.01-0.05 per analysis), doesn't change often
474 * **Size**: 2 KB per claim
475 * **Decision**: ✅ STORE (cached) - Cost-effective
476
477 ==== Confidence Score ====
478
479 * **What**: 0-100 score of analysis confidence
480 * **Computed**: Once by AKEL
481 * **Stored in**: Claim table (integer field)
482 * **Recomputed**: When evidence added, source track record changes significantly, or system improves
483 * **Why store**: Cheap to store, expensive to compute, users need it fast
484 * **Size**: 4 bytes per claim
485 * **Decision**: ✅ STORE (cached) - Performance critical
486
487 ==== Risk Score ====
488
489 * **What**: 0-100 score of claim risk level
490 * **Computed**: Once by AKEL
491 * **Stored in**: Claim table (integer field)
492 * **Recomputed**: When domain changes, evidence changes, or controversy detected
493 * **Why store**: Same as confidence score
494 * **Size**: 4 bytes per claim
495 * **Decision**: ✅ STORE (cached) - Performance critical
496 **COMPUTE DYNAMICALLY (Never Store):**
497
498 ==== Scenarios ====
499
500 ⚠️ CRITICAL DECISION
501
502 * **What**: 2-5 possible interpretations of claim with assumptions
503 * **Current design**: Stored in Scenario table
504 * **Alternative**: Compute on-demand when user views claim details
505 * **Storage cost**: 1 KB per scenario × 3 scenarios average = 3 KB per claim
506 * **Compute cost**: $0.005-0.01 per request (LLM API call)
507 * **Frequency**: Viewed in detail by 20% of users
508 * **Trade-off analysis**:
509 - IF STORED: 1M claims × 3 KB = 3 GB storage, $0.05/month, fast access
510 - IF COMPUTED: 1M claims × 20% views × $0.01 = $2,000/month in LLM costs
511 * **Reproducibility**: Scenarios may improve as AI improves (good to recompute)
512 * **Speed**: Computed = 5-8 seconds delay, Stored = instant
513 * **Decision**: ✅ STORE (hybrid approach below)
514 **Scenario Strategy** (APPROVED):
515
516 1. **Store scenarios** initially when claim analyzed
517 2. **Mark as stale** when system improves significantly
518 3. **Recompute on next view** if marked stale
519 4. **Cache for 30 days** if frequently accessed
520 5. **Result**: Best of both worlds - speed + freshness
521
522 ==== Verdict Synthesis ====
523
524
525
526 * **What**: Final conclusion text synthesizing all scenarios
527 * **Compute cost**: $0.002-0.005 per request
528 * **Frequency**: Every time claim viewed
529 * **Why not store**: Changes as evidence/scenarios change, users want fresh analysis
530 * **Speed**: 2-3 seconds (acceptable)
531 **Alternative**: Store "last verdict" as cached field, recompute only if claim edited or marked stale
532 * **Recommendation**: ✅ STORE cached version, mark stale when changes occur
533
534 ==== Search Results ====
535
536 * **What**: Lists of claims matching search query
537 * **Compute from**: Elasticsearch index
538 * **Cache**: 15 minutes in Redis for popular queries
539 * **Why not store permanently**: Constantly changing, infinite possible queries
540
541 ==== Aggregated Statistics ====
542
543 * **What**: "Total claims: 1,234,567", "Average confidence: 78%", etc.
544 * **Compute from**: Database queries
545 * **Cache**: 1 hour in Redis
546 * **Why not store**: Can be derived, relatively cheap to compute
547
548 ==== User Reputation ====
549
550 * **What**: Score based on contributions
551 * **Current design**: Stored in User table
552 * **Alternative**: Compute from Edit table
553 * **Trade-off**:
554 - Stored: Fast, simple
555 - Computed: Always accurate, no denormalization
556 * **Frequency**: Read on every user action
557 * **Compute cost**: Simple COUNT query, milliseconds
558 * **Decision**: ✅ STORE - Performance critical, read-heavy
559
560 === Summary Table ===
561
562 | Data Type | Storage | Compute | Size per Claim | Decision | Rationale |\\
563 |-|-|-|||-|\\
564 | Claim core | ✅ | - | 1 KB | STORE | Essential |\\
565 | Evidence | ✅ | - | 2 KB × 5 = 10 KB | STORE | Reproducibility |\\
566 | Sources | ✅ | - | 500 B (shared) | STORE | Track record |\\
567 | Edit history | ✅ | - | 2 KB × 20% = 400 B avg | STORE | Audit |\\
568 | Analysis summary | ✅ | Once | 2 KB | STORE (cached) | Cost-effective |\\
569 | Confidence score | ✅ | Once | 4 B | STORE (cached) | Fast access |\\
570 | Risk score | ✅ | Once | 4 B | STORE (cached) | Fast access |\\
571 | Scenarios | ✅ | When stale | 3 KB | STORE (hybrid) | Balance cost/speed |\\
572 | Verdict | ✅ | When stale | 1 KB | STORE (cached) | Fast access |\\
573 | Flags | ✅ | - | 500 B × 10% = 50 B avg | STORE | Improvement |\\
574 | ErrorPatterns | ✅ | - | 1 KB (global) | STORE | Learning |\\
575 | QualityMetrics | ✅ | - | 200 B (time series) | STORE | Trending |\\
576 | Search results | - | ✅ | - | COMPUTE + 15min cache | Dynamic |\\
577 | Aggregations | - | ✅ | - | COMPUTE + 1hr cache | Derivable |
578 **Total storage per claim**: 18 KB (without edits and flags)
579 **For 1 million claims**:
580
581 * **Storage**: 18 GB (manageable)
582 * **PostgreSQL**: $50/month (standard instance)
583 * **Redis cache**: $20/month (1 GB instance)
584 * **S3 archives**: $5/month (old edits)
585 * **Total**: $75/month infrastructure
586 **LLM cost savings by caching**:
587 * Analysis summary stored: Save $0.03 per claim = $30K per 1M claims
588 * Scenarios stored: Save $0.01 per claim × 20% views = $2K per 1M claims
589 * Verdict stored: Save $0.003 per claim = $3K per 1M claims
590 * **Total savings**: $35K per 1M claims vs recomputing every time
591
592 === Recomputation Triggers ===
593
594 **When to mark cached data as stale and recompute:**
595
596 1. **User edits claim** → Recompute: all (analysis, scenarios, verdict, scores)
597 2. **Evidence added** → Recompute: scenarios, verdict, confidence score
598 3. **Source track record changes >10 points** → Recompute: confidence score, verdict
599 4. **System improvement deployed** → Mark affected claims stale, recompute on next view
600 5. **Controversy detected** (high flag rate) → Recompute: risk score
601 **Recomputation strategy**:
602
603 * **Eager**: Immediately recompute (for user edits)
604 * **Lazy**: Recompute on next view (for system improvements)
605 * **Batch**: Nightly re-evaluation of stale claims (if <1000)
606
607 === Database Size Projection ===
608
609 **Year 1**: 10K claims
610
611 * Storage: 180 MB
612 * Cost: $10/month
613 **Year 3**: 100K claims
614 * Storage: 1.8 GB
615 * Cost: $30/month
616 **Year 5**: 1M claims
617 * Storage: 18 GB
618 * Cost: $75/month
619 **Year 10**: 10M claims
620 * Storage: 180 GB
621 * Cost: $300/month
622 * Optimization: Archive old claims to S3 ($5/TB/month)
623 **Conclusion**: Storage costs are manageable, LLM cost savings are substantial.
624
625 == 3. Key Simplifications ==
626
627 * **Two content states only**: Published, Hidden
628 * **Three user roles only**: Reader, Contributor, Moderator
629 * **No complex versioning**: Linear edit history
630 * **Reputation-based permissions**: Not role hierarchy
631 * **Source track records**: Continuous evaluation
632
633 == 3. What Gets Stored in the Database ==
634
635 === 3.1 Primary Storage (PostgreSQL) ===
636
637 **Claims Table**:
638
639 * Current state only (latest version)
640 * Fields: id, assertion, domain, status, confidence_score, risk_score, completeness_score, version, created_at, updated_at
641 **Evidence Table**:
642 * All evidence records
643 * Fields: id, claim_id, source_id, excerpt, url, relevance_score, supports, extracted_at, archived
644 **Scenario Table**:
645 * All scenarios for each claim
646 * Fields: id, claim_id, description, assumptions (text array), confidence, created_by, created_at
647 **Source Table**:
648 * Track record database (continuously updated)
649 * Fields: id, name, domain, type, track_record_score, accuracy_history (JSON), correction_frequency, last_updated, claim_count, corrections_count
650 **User Table**:
651 * All user accounts
652 * Fields: id, username, email, role (Reader/Contributor/Moderator), reputation, created_at, last_active, contributions_count, flags_submitted, flags_accepted
653 **Edit Table**:
654 * Complete version history
655 * Fields: id, entity_type, entity_id, user_id, before_state (JSON), after_state (JSON), edit_type, reason, created_at
656 **Flag Table**:
657 * User-reported issues
658 * Fields: id, entity_type, entity_id, reported_by, issue_type, description, status, resolved_by, resolution_note, created_at, resolved_at
659 **ErrorPattern Table**:
660 * System improvement queue
661 * Fields: id, error_category, claim_id, description, root_cause, frequency, status, created_at, fixed_at
662 **QualityMetric Table**:
663 * Time-series quality data
664 * Fields: id, metric_type, metric_category, value, target, timestamp
665
666 === 3.2 What's NOT Stored (Computed on-the-fly) ===
667
668 * **Verdicts**: Synthesized from evidence + scenarios when requested
669 * **Risk scores**: Recalculated based on current factors
670 * **Aggregated statistics**: Computed from base data
671 * **Search results**: Generated from Elasticsearch index
672
673 === 3.3 Cache Layer (Redis) ===
674
675 **Cached for performance**:
676
677 * Frequently accessed claims (TTL: 1 hour)
678 * Search results (TTL: 15 minutes)
679 * User sessions (TTL: 24 hours)
680 * Source track records (TTL: 1 hour)
681
682 === 3.4 File Storage (S3) ===
683
684 **Archived content**:
685
686 * Old edit history (>3 months)
687 * Evidence documents (archived copies)
688 * Database backups
689 * Export files
690
691 === 3.5 Search Index (Elasticsearch) ===
692
693 **Indexed for search**:
694
695 * Claim assertions (full-text)
696 * Evidence excerpts (full-text)
697 * Scenario descriptions (full-text)
698 * Source names (autocomplete)
699 Synchronized from PostgreSQL via change data capture or periodic sync.
700
701 == 4. Related Pages ==
702
703 * [[Architecture>>Test.FactHarbor V0\.9\.100.Specification.Architecture.WebHome]]
704 * [[Requirements>>Test.FactHarbor V0\.9\.100.Specification.Requirements.WebHome]]
705 * [[Workflows>>Test.FactHarbor.Specification.Workflows.WebHome]]