Changes for page FAQ

Last modified by Robert Schaub on 2025/12/24 20:33

From version 3.2
edited by Robert Schaub
on 2025/12/16 21:39
Change comment: Renamed back-links.
To version 3.1
edited by Robert Schaub
on 2025/12/15 16:56
Change comment: Imported from XAR

Summary

Details

Page properties
Content
... ... @@ -13,7 +13,6 @@
13 13  **What**: System dynamically researches claims using AKEL (AI Knowledge Extraction Layer)
14 14  
15 15  **Process**:
16 -
17 17  * Extracts claims from submitted text
18 18  * Generates structured sub-queries
19 19  * Performs **mandatory contradiction search** (actively seeks counter-evidence, not just confirmations)
... ... @@ -41,7 +41,6 @@
41 41  **What**: Sampling audits where experts review AI-generated content
42 42  
43 43  **Rates**:
44 -
45 45  * High-risk (Tier A): 30-50% sampling
46 46  * Medium-risk (Tier B): 10-20% sampling
47 47  * Low-risk (Tier C): 5-10% sampling
... ... @@ -53,7 +53,6 @@
53 53  === Why All Three Matter ===
54 54  
55 55  **Complementary Strengths**:
56 -
57 57  * **AI research**: Scale and speed for emerging claims
58 58  * **Expert authoring**: Authority and precision for critical domains
59 59  * **Audit feedback**: Continuous quality improvement
... ... @@ -61,7 +61,6 @@
61 61  **Expert Time Optimization**:
62 62  
63 63  Experts can choose where to focus their time:
64 -
65 65  * Author high-priority content directly
66 66  * Validate and edit AI-generated outputs
67 67  * Audit samples to improve system-wide AI performance
... ... @@ -81,7 +81,6 @@
81 81  FactHarbor includes multiple safeguards against echo chambers and filter bubbles:
82 82  
83 83  **Mandatory Contradiction Search**:
84 -
85 85  * AI must actively search for counter-evidence, not just confirmations
86 86  * System checks for echo chamber patterns in source clusters
87 87  * Flags tribal or ideological source clustering
... ... @@ -88,25 +88,21 @@
88 88  * Requires diverse perspectives across political/ideological spectrum
89 89  
90 90  **Multiple Scenarios**:
91 -
92 92  * Claims are evaluated under different interpretations
93 93  * Reveals how assumptions change conclusions
94 94  * Makes disagreements understandable, not divisive
95 95  
96 96  **Transparent Reasoning**:
97 -
98 98  * All assumptions, definitions, and boundaries are explicit
99 99  * Evidence chains are traceable
100 100  * Uncertainty is quantified, not hidden
101 101  
102 102  **Audit System**:
103 -
104 104  * Human auditors check for bubble patterns
105 105  * Feedback loop improves AI search diversity
106 106  * Community can flag missing perspectives
107 107  
108 108  **Federation**:
109 -
110 110  * Multiple independent nodes with different perspectives
111 111  * No single entity controls "the truth"
112 112  * Cross-node contradiction detection
... ... @@ -118,23 +118,20 @@
118 118  This is exactly what FactHarbor is designed for:
119 119  
120 120  **Scenarios capture contexts**:
121 -
122 122  * Each scenario defines specific boundaries, definitions, and assumptions
123 123  * The same claim can have different verdicts in different scenarios
124 124  * Example: "Coffee is healthy" depends on:
125 -** Definition of "healthy" (reduces disease risk? improves mood? affects specific conditions?)
126 -** Population (adults? pregnant women? people with heart conditions?)
127 -** Consumption level (1 cup/day? 5 cups/day?)
128 -** Time horizon (short-term? long-term?)
115 + ** Definition of "healthy" (reduces disease risk? improves mood? affects specific conditions?)
116 + ** Population (adults? pregnant women? people with heart conditions?)
117 + ** Consumption level (1 cup/day? 5 cups/day?)
118 + ** Time horizon (short-term? long-term?)
129 129  
130 130  **Truth Landscape**:
131 -
132 132  * Shows all scenarios and their verdicts side-by-side
133 133  * Users see *why* interpretations differ
134 134  * No forced consensus when legitimate disagreement exists
135 135  
136 136  **Explicit Assumptions**:
137 -
138 138  * Every scenario states its assumptions clearly
139 139  * Users can compare how changing assumptions changes conclusions
140 140  * Makes context-dependence visible, not hidden
... ... @@ -144,7 +144,6 @@
144 144  == What makes FactHarbor different from traditional fact-checking sites? ==
145 145  
146 146  **Traditional Fact-Checking**:
147 -
148 148  * Binary verdicts: True / Mostly True / False
149 149  * Single interpretation chosen by fact-checker
150 150  * Often hides legitimate contextual differences
... ... @@ -151,7 +151,6 @@
151 151  * Limited ability to show *why* people disagree
152 152  
153 153  **FactHarbor**:
154 -
155 155  * **Multi-scenario**: Shows multiple valid interpretations
156 156  * **Likelihood-based**: Ranges with uncertainty, not binary labels
157 157  * **Transparent assumptions**: Makes boundaries and definitions explicit
... ... @@ -164,7 +164,6 @@
164 164  == How do you prevent manipulation or coordinated misinformation campaigns? ==
165 165  
166 166  **Quality Gates**:
167 -
168 168  * Automated checks before AI-generated content publishes
169 169  * Source quality verification
170 170  * Mandatory contradiction search
... ... @@ -171,13 +171,11 @@
171 171  * Bubble detection for coordinated campaigns
172 172  
173 173  **Audit System**:
174 -
175 175  * Stratified sampling catches manipulation patterns
176 176  * Expert auditors validate AI research quality
177 177  * Failed audits trigger immediate review
178 178  
179 179  **Transparency**:
180 -
181 181  * All reasoning chains are visible
182 182  * Evidence sources are traceable
183 183  * AKEL involvement clearly labeled
... ... @@ -184,13 +184,11 @@
184 184  * Version history preserved
185 185  
186 186  **Moderation**:
187 -
188 188  * Moderators handle abuse, spam, coordinated manipulation
189 189  * Content can be flagged by community
190 190  * Audit trail maintained even if content hidden
191 191  
192 192  **Federation**:
193 -
194 194  * Multiple nodes with independent governance
195 195  * No single point of control
196 196  * Cross-node contradiction detection
... ... @@ -203,7 +203,6 @@
203 203  FactHarbor is designed for evolving knowledge:
204 204  
205 205  **Automatic Re-evaluation**:
206 -
207 207  1. New evidence arrives
208 208  2. System detects affected scenarios and verdicts
209 209  3. AKEL proposes updated verdicts
... ... @@ -212,19 +212,16 @@
212 212  6. Old versions remain accessible
213 213  
214 214  **Version History**:
215 -
216 216  * Every verdict has complete history
217 217  * Users can see "as of date X, what did we know?"
218 218  * Timeline shows how understanding evolved
219 219  
220 220  **Transparent Updates**:
221 -
222 222  * Reason for re-evaluation documented
223 223  * New evidence clearly linked
224 224  * Changes explained, not hidden
225 225  
226 226  **User Notifications**:
227 -
228 228  * Users following claims are notified of updates
229 229  * Can compare old vs new verdicts
230 230  * Can see which evidence changed conclusions
... ... @@ -236,7 +236,6 @@
236 236  **Anyone** - even without login:
237 237  
238 238  **Readers** (no login required):
239 -
240 240  * Browse and search all published content
241 241  * Submit text for analysis
242 242  * New claims added automatically unless duplicates exist
... ... @@ -243,7 +243,6 @@
243 243  * System deduplicates and normalizes
244 244  
245 245  **Contributors** (logged in):
246 -
247 247  * Everything Readers can do
248 248  * Submit evidence sources
249 249  * Suggest scenarios
... ... @@ -250,7 +250,6 @@
250 250  * Participate in discussions
251 251  
252 252  **Workflow**:
253 -
254 254  1. User submits text (as Reader or Contributor)
255 255  2. AKEL extracts claims
256 256  3. Checks for existing duplicates
... ... @@ -267,7 +267,6 @@
267 267  Risk tiers determine review requirements and publication workflow:
268 268  
269 269  **Tier A (High Risk)**:
270 -
271 271  * **Domains**: Medical, legal, elections, safety, security, major financial
272 272  * **Publication**: AI can publish with warnings, expert review required for "Human-Reviewed" status
273 273  * **Audit rate**: Recommendation 30-50%
... ... @@ -274,7 +274,6 @@
274 274  * **Why**: Potential for significant harm if wrong
275 275  
276 276  **Tier B (Medium Risk)**:
277 -
278 278  * **Domains**: Complex policy, science causality, contested issues
279 279  * **Publication**: AI can publish immediately with clear labeling
280 280  * **Audit rate**: Recommendation 10-20%
... ... @@ -281,7 +281,6 @@
281 281  * **Why**: Nuanced but lower immediate harm risk
282 282  
283 283  **Tier C (Low Risk)**:
284 -
285 285  * **Domains**: Definitions, established facts, historical data
286 286  * **Publication**: AI publication default
287 287  * **Audit rate**: Recommendation 5-10%
... ... @@ -288,7 +288,6 @@
288 288  * **Why**: Well-established, low controversy
289 289  
290 290  **Assignment**:
291 -
292 292  * AKEL suggests tier based on domain, keywords, impact
293 293  * Moderators and Experts can override
294 294  * Risk tiers reviewed based on audit outcomes
... ... @@ -298,7 +298,6 @@
298 298  == How does federation work and why is it important? ==
299 299  
300 300  **Federation Model**:
301 -
302 302  * Multiple independent FactHarbor nodes
303 303  * Each node has own database, AKEL, governance
304 304  * Nodes exchange claims, scenarios, evidence, verdicts
... ... @@ -305,7 +305,6 @@
305 305  * No central authority
306 306  
307 307  **Why Federation Matters**:
308 -
309 309  * **Resilience**: No single point of failure or censorship
310 310  * **Autonomy**: Communities govern themselves
311 311  * **Scalability**: Add nodes to handle more users
... ... @@ -313,7 +313,6 @@
313 313  * **Trust diversity**: Multiple perspectives, not single truth source
314 314  
315 315  **How Nodes Exchange Data**:
316 -
317 317  1. Local node creates versions
318 318  2. Builds signed bundle
319 319  3. Pushes to trusted neighbor nodes
... ... @@ -322,7 +322,6 @@
322 322  6. Local re-evaluation if needed
323 323  
324 324  **Trust Model**:
325 -
326 326  * Trusted nodes → auto-import
327 327  * Neutral nodes → import with review
328 328  * Untrusted nodes → manual only
... ... @@ -334,19 +334,16 @@
334 334  **Yes - and that's a feature, not a bug**:
335 335  
336 336  **Multiple Scenarios**:
337 -
338 338  * Experts can create different scenarios with different assumptions
339 339  * Each scenario gets its own verdict
340 340  * Users see *why* experts disagree (different definitions, boundaries, evidence weighting)
341 341  
342 342  **Parallel Verdicts**:
343 -
344 344  * Same scenario, different expert interpretations
345 345  * Both verdicts visible with expert attribution
346 346  * No forced consensus
347 347  
348 348  **Transparency**:
349 -
350 350  * Expert reasoning documented
351 351  * Assumptions stated explicitly
352 352  * Evidence chains traceable
... ... @@ -353,7 +353,6 @@
353 353  * Users can evaluate competing expert opinions
354 354  
355 355  **Federation**:
356 -
357 357  * Different nodes can have different expert conclusions
358 358  * Cross-node branching allowed
359 359  * Users can see how conclusions vary across nodes
... ... @@ -365,7 +365,6 @@
365 365  **Multiple Safeguards**:
366 366  
367 367  **Quality Gate 4: Structural Integrity**:
368 -
369 369  * Fact-checking against sources
370 370  * No hallucinations allowed
371 371  * Logic chain must be valid and traceable
... ... @@ -372,7 +372,6 @@
372 372  * References must be accessible and verifiable
373 373  
374 374  **Evidence Requirements**:
375 -
376 376  * Primary sources required
377 377  * Citations must be complete
378 378  * Sources must be accessible
... ... @@ -379,13 +379,11 @@
379 379  * Reliability scored
380 380  
381 381  **Audit System**:
382 -
383 383  * Human auditors check AI-generated content
384 384  * Hallucinations caught and fed back into training
385 385  * Patterns of errors trigger system improvements
386 386  
387 387  **Transparency**:
388 -
389 389  * All reasoning chains visible
390 390  * Sources linked
391 391  * Users can verify claims against sources
... ... @@ -392,7 +392,6 @@
392 392  * AKEL outputs clearly labeled
393 393  
394 394  **Human Oversight**:
395 -
396 396  * Tier A requires expert review for "Human-Reviewed" status
397 397  * Audit sampling catches errors
398 398  * Community can flag issues
... ... @@ -404,7 +404,6 @@
404 404  [ToDo: Business model and sustainability to be defined]
405 405  
406 406  Potential models under consideration:
407 -
408 408  * Non-profit foundation with grants and donations
409 409  * Institutional subscriptions (universities, research organizations, media)
410 410  * API access for third-party integrations
... ... @@ -421,4 +421,5 @@
421 421  * [[AKEL (AI Knowledge Extraction Layer)>>FactHarbor.Specification.AI Knowledge Extraction Layer (AKEL).WebHome]]
422 422  * [[Automation>>FactHarbor.Specification.Automation.WebHome]]
423 423  * [[Federation & Decentralization>>FactHarbor.Specification.Federation & Decentralization.WebHome]]
424 -* [[Mission & Purpose>>FactHarbor.Organisation V0\.9\.18.Core Problems FactHarbor Solves.WebHome]]
380 +* [[Mission & Purpose>>FactHarbor.Organisation.Core Problems FactHarbor Solves.WebHome]]
381 +