Changes for page FAQ
Last modified by Robert Schaub on 2025/12/24 20:33
From version 2.1
edited by Robert Schaub
on 2025/12/14 23:02
on 2025/12/14 23:02
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -8,7 +8,7 @@ 8 8 9 9 FactHarbor uses a hybrid model: 10 10 11 -** ~1.**AI-Generated (scalable)**: System dynamically researches claims—extracting, generating structured sub-queries, performing mandatory contradiction search (actively seeking counter-evidence, not just confirmations), running quality gates. Published with clear "AI-Generated" labels.**11 +**1. AI-Generated (scalable)**: System dynamically researches claims—extracting, generating structured sub-queries, performing mandatory contradiction search (actively seeking counter-evidence, not just confirmations), running quality gates. Published with clear "AI-Generated" labels. 12 12 13 13 **2. Expert-Authored (authoritative)**: Domain experts directly author, edit, and validate content—especially for high-risk domains (medical, legal). These get "Human-Reviewed" status and higher trust. 14 14 ... ... @@ -15,7 +15,6 @@ 15 15 **3. Audit-Improved (continuous quality)**: Sampling audits (30-50% high-risk, 5-10% low-risk) where expert reviews systematically improve AI research quality. 16 16 17 17 **Why both matter**: 18 - 19 19 * AI research handles scale—emerging claims, immediate responses with transparent reasoning 20 20 * Expert authoring provides authoritative grounding for critical domains 21 21 * Audit feedback ensures AI quality improves based on expert validation patterns ... ... @@ -31,7 +31,6 @@ 31 31 FactHarbor includes multiple safeguards against echo chambers and filter bubbles: 32 32 33 33 **Mandatory Contradiction Search**: 34 - 35 35 * AI must actively search for counter-evidence, not just confirmations 36 36 * System checks for echo chamber patterns in source clusters 37 37 * Flags tribal or ideological source clustering ... ... @@ -38,25 +38,21 @@ 38 38 * Requires diverse perspectives across political/ideological spectrum 39 39 40 40 **Multiple Scenarios**: 41 - 42 42 * Claims are evaluated under different interpretations 43 43 * Reveals how assumptions change conclusions 44 44 * Makes disagreements understandable, not divisive 45 45 46 46 **Transparent Reasoning**: 47 - 48 48 * All assumptions, definitions, and boundaries are explicit 49 49 * Evidence chains are traceable 50 50 * Uncertainty is quantified, not hidden 51 51 52 52 **Audit System**: 53 - 54 54 * Human auditors check for bubble patterns 55 55 * Feedback loop improves AI search diversity 56 56 * Community can flag missing perspectives 57 57 58 58 **Federation**: 59 - 60 60 * Multiple independent nodes with different perspectives 61 61 * No single entity controls "the truth" 62 62 * Cross-node contradiction detection ... ... @@ -68,23 +68,20 @@ 68 68 This is exactly what FactHarbor is designed for: 69 69 70 70 **Scenarios capture contexts**: 71 - 72 72 * Each scenario defines specific boundaries, definitions, and assumptions 73 73 * The same claim can have different verdicts in different scenarios 74 74 * Example: "Coffee is healthy" depends on: 75 -** Definition of "healthy" (reduces disease risk? improves mood? affects specific conditions?) 76 -** Population (adults? pregnant women? people with heart conditions?) 77 -** Consumption level (1 cup/day? 5 cups/day?) 78 -** Time horizon (short-term? long-term?) 68 + ** Definition of "healthy" (reduces disease risk? improves mood? affects specific conditions?) 69 + ** Population (adults? pregnant women? people with heart conditions?) 70 + ** Consumption level (1 cup/day? 5 cups/day?) 71 + ** Time horizon (short-term? long-term?) 79 79 80 80 **Truth Landscape**: 81 - 82 82 * Shows all scenarios and their verdicts side-by-side 83 83 * Users see *why* interpretations differ 84 84 * No forced consensus when legitimate disagreement exists 85 85 86 86 **Explicit Assumptions**: 87 - 88 88 * Every scenario states its assumptions clearly 89 89 * Users can compare how changing assumptions changes conclusions 90 90 * Makes context-dependence visible, not hidden ... ... @@ -94,7 +94,6 @@ 94 94 == What makes FactHarbor different from traditional fact-checking sites? == 95 95 96 96 **Traditional Fact-Checking**: 97 - 98 98 * Binary verdicts: True / Mostly True / False 99 99 * Single interpretation chosen by fact-checker 100 100 * Often hides legitimate contextual differences ... ... @@ -101,7 +101,6 @@ 101 101 * Limited ability to show *why* people disagree 102 102 103 103 **FactHarbor**: 104 - 105 105 * **Multi-scenario**: Shows multiple valid interpretations 106 106 * **Likelihood-based**: Ranges with uncertainty, not binary labels 107 107 * **Transparent assumptions**: Makes boundaries and definitions explicit ... ... @@ -114,7 +114,6 @@ 114 114 == How do you prevent manipulation or coordinated misinformation campaigns? == 115 115 116 116 **Quality Gates**: 117 - 118 118 * Automated checks before AI-generated content publishes 119 119 * Source quality verification 120 120 * Mandatory contradiction search ... ... @@ -121,13 +121,11 @@ 121 121 * Bubble detection for coordinated campaigns 122 122 123 123 **Audit System**: 124 - 125 125 * Stratified sampling catches manipulation patterns 126 126 * Expert auditors validate AI research quality 127 127 * Failed audits trigger immediate review 128 128 129 129 **Transparency**: 130 - 131 131 * All reasoning chains are visible 132 132 * Evidence sources are traceable 133 133 * AKEL involvement clearly labeled ... ... @@ -134,13 +134,11 @@ 134 134 * Version history preserved 135 135 136 136 **Moderation**: 137 - 138 138 * Moderators handle abuse, spam, coordinated manipulation 139 139 * Content can be flagged by community 140 140 * Audit trail maintained even if content hidden 141 141 142 142 **Federation**: 143 - 144 144 * Multiple nodes with independent governance 145 145 * No single point of control 146 146 * Cross-node contradiction detection ... ... @@ -153,7 +153,6 @@ 153 153 FactHarbor is designed for evolving knowledge: 154 154 155 155 **Automatic Re-evaluation**: 156 - 157 157 1. New evidence arrives 158 158 2. System detects affected scenarios and verdicts 159 159 3. AKEL proposes updated verdicts ... ... @@ -162,19 +162,16 @@ 162 162 6. Old versions remain accessible 163 163 164 164 **Version History**: 165 - 166 166 * Every verdict has complete history 167 167 * Users can see "as of date X, what did we know?" 168 168 * Timeline shows how understanding evolved 169 169 170 170 **Transparent Updates**: 171 - 172 172 * Reason for re-evaluation documented 173 173 * New evidence clearly linked 174 174 * Changes explained, not hidden 175 175 176 176 **User Notifications**: 177 - 178 178 * Users following claims are notified of updates 179 179 * Can compare old vs new verdicts 180 180 * Can see which evidence changed conclusions ... ... @@ -186,7 +186,6 @@ 186 186 **Anyone** - even without login: 187 187 188 188 **Readers** (no login required): 189 - 190 190 * Browse and search all published content 191 191 * Submit text for analysis 192 192 * New claims added automatically unless duplicates exist ... ... @@ -193,7 +193,6 @@ 193 193 * System deduplicates and normalizes 194 194 195 195 **Contributors** (logged in): 196 - 197 197 * Everything Readers can do 198 198 * Submit evidence sources 199 199 * Suggest scenarios ... ... @@ -200,7 +200,6 @@ 200 200 * Participate in discussions 201 201 202 202 **Workflow**: 203 - 204 204 1. User submits text (as Reader or Contributor) 205 205 2. AKEL extracts claims 206 206 3. Checks for existing duplicates ... ... @@ -217,7 +217,6 @@ 217 217 Risk tiers determine review requirements and publication workflow: 218 218 219 219 **Tier A (High Risk)**: 220 - 221 221 * **Domains**: Medical, legal, elections, safety, security, major financial 222 222 * **Publication**: AI can publish with warnings, expert review required for "Human-Reviewed" status 223 223 * **Audit rate**: Recommendation 30-50% ... ... @@ -224,7 +224,6 @@ 224 224 * **Why**: Potential for significant harm if wrong 225 225 226 226 **Tier B (Medium Risk)**: 227 - 228 228 * **Domains**: Complex policy, science causality, contested issues 229 229 * **Publication**: AI can publish immediately with clear labeling 230 230 * **Audit rate**: Recommendation 10-20% ... ... @@ -231,7 +231,6 @@ 231 231 * **Why**: Nuanced but lower immediate harm risk 232 232 233 233 **Tier C (Low Risk)**: 234 - 235 235 * **Domains**: Definitions, established facts, historical data 236 236 * **Publication**: AI publication default 237 237 * **Audit rate**: Recommendation 5-10% ... ... @@ -238,7 +238,6 @@ 238 238 * **Why**: Well-established, low controversy 239 239 240 240 **Assignment**: 241 - 242 242 * AKEL suggests tier based on domain, keywords, impact 243 243 * Moderators and Experts can override 244 244 * Risk tiers reviewed based on audit outcomes ... ... @@ -248,7 +248,6 @@ 248 248 == How does federation work and why is it important? == 249 249 250 250 **Federation Model**: 251 - 252 252 * Multiple independent FactHarbor nodes 253 253 * Each node has own database, AKEL, governance 254 254 * Nodes exchange claims, scenarios, evidence, verdicts ... ... @@ -255,7 +255,6 @@ 255 255 * No central authority 256 256 257 257 **Why Federation Matters**: 258 - 259 259 * **Resilience**: No single point of failure or censorship 260 260 * **Autonomy**: Communities govern themselves 261 261 * **Scalability**: Add nodes to handle more users ... ... @@ -263,7 +263,6 @@ 263 263 * **Trust diversity**: Multiple perspectives, not single truth source 264 264 265 265 **How Nodes Exchange Data**: 266 - 267 267 1. Local node creates versions 268 268 2. Builds signed bundle 269 269 3. Pushes to trusted neighbor nodes ... ... @@ -272,7 +272,6 @@ 272 272 6. Local re-evaluation if needed 273 273 274 274 **Trust Model**: 275 - 276 276 * Trusted nodes → auto-import 277 277 * Neutral nodes → import with review 278 278 * Untrusted nodes → manual only ... ... @@ -284,19 +284,16 @@ 284 284 **Yes - and that's a feature, not a bug**: 285 285 286 286 **Multiple Scenarios**: 287 - 288 288 * Experts can create different scenarios with different assumptions 289 289 * Each scenario gets its own verdict 290 290 * Users see *why* experts disagree (different definitions, boundaries, evidence weighting) 291 291 292 292 **Parallel Verdicts**: 293 - 294 294 * Same scenario, different expert interpretations 295 295 * Both verdicts visible with expert attribution 296 296 * No forced consensus 297 297 298 298 **Transparency**: 299 - 300 300 * Expert reasoning documented 301 301 * Assumptions stated explicitly 302 302 * Evidence chains traceable ... ... @@ -303,7 +303,6 @@ 303 303 * Users can evaluate competing expert opinions 304 304 305 305 **Federation**: 306 - 307 307 * Different nodes can have different expert conclusions 308 308 * Cross-node branching allowed 309 309 * Users can see how conclusions vary across nodes ... ... @@ -315,7 +315,6 @@ 315 315 **Multiple Safeguards**: 316 316 317 317 **Quality Gate 4: Structural Integrity**: 318 - 319 319 * Fact-checking against sources 320 320 * No hallucinations allowed 321 321 * Logic chain must be valid and traceable ... ... @@ -322,7 +322,6 @@ 322 322 * References must be accessible and verifiable 323 323 324 324 **Evidence Requirements**: 325 - 326 326 * Primary sources required 327 327 * Citations must be complete 328 328 * Sources must be accessible ... ... @@ -329,13 +329,11 @@ 329 329 * Reliability scored 330 330 331 331 **Audit System**: 332 - 333 333 * Human auditors check AI-generated content 334 334 * Hallucinations caught and fed back into training 335 335 * Patterns of errors trigger system improvements 336 336 337 337 **Transparency**: 338 - 339 339 * All reasoning chains visible 340 340 * Sources linked 341 341 * Users can verify claims against sources ... ... @@ -342,7 +342,6 @@ 342 342 * AKEL outputs clearly labeled 343 343 344 344 **Human Oversight**: 345 - 346 346 * Tier A requires expert review for "Human-Reviewed" status 347 347 * Audit sampling catches errors 348 348 * Community can flag issues ... ... @@ -354,7 +354,6 @@ 354 354 [ToDo: Business model and sustainability to be defined] 355 355 356 356 Potential models under consideration: 357 - 358 358 * Non-profit foundation with grants and donations 359 359 * Institutional subscriptions (universities, research organizations, media) 360 360 * API access for third-party integrations ... ... @@ -372,3 +372,4 @@ 372 372 * [[Automation>>FactHarbor.Specification.Automation.WebHome]] 373 373 * [[Federation & Decentralization>>FactHarbor.Specification.Federation & Decentralization.WebHome]] 374 374 * [[Mission & Purpose>>FactHarbor.Organisation.Mission & Purpose.WebHome]] 334 +